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Setting

■ Given a system of atoms with Cartesian coordinates
{x1, . . . , xn} ⊂ R3 with atomic numbers {Z1, . . . , Zn}, nd
the system’s energy and its derivative wrt. the atoms’
positions.

■ Mesoscale systems (thousands to hundreds of thousands of
atoms).
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Classical Approaches

■ Ab-initio methods: generally too slow
■ Empirical potentials, like Morse below: have trouble reaching

the desired accuracy

E({xi}) =
∑
i<j

De [exp(−2a(rij − re))− 2 exp(−a(rij − re))]
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Machine Learning to the Rescue

Key ingredient for ML potentials: invariant descriptors of atomic
environments.

■ Gaussian approximation potentials1 (GAP), using spherical
harmonics and Gaussian kernels.

■ Neural network potentials2 (NNP), using a set of
atom-centered symmetry functions and feed-forward neural
networks.

Systematically improvable (given enough training data), but still
slow.

1Albert Bartók (2010). The Gaussian Approximation Potential: An Interatomic Potential Derived from First Principles
Quantum Mechanics. Springer Science & Business Media

2Jörg Behler (2011). “Atom-centered symmetry functions for constructing high-dimensional neural network
potentials”. In: The Journal of chemical physics 134.7, p. 074106
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Basic Idea

■ Find invariant polynomial p(u) that approximates the site
energy V (u).

■ For that, construct set of basis polynomials bi ∈ Pperm ∩ Prot.
■ Then, learn coef cients ci and set

p(u) :=
∑
i

cibi(u).

Alexander V Shapeev (2016). “Moment tensor potentials: A class of systematically improvable interatomic
potentials”. In: Multiscale Modeling & Simulation 14.3, pp. 1153–1173
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Moment Tensors

For µ, ν ∈ N, de ne the moment tensors by

Mµ,ν(u) :=
∑
i

∥ui∥2µu⊗ν
i ,

where
u⊗ν
i = ui ⊗ . . .⊗ ui︸ ︷︷ ︸

ν times

is the ν-fold Kronecker product.
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The Basis Polynomials

■ The nal basis functions Bα are constructed as invariant
polynomials of the entries of the moment tensors

■ Ef cient evaluation is possible by using symmetry of the
tensors and common sub-terms
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Approximation Error Estimate

Theorem (Shapeev)

Let V q the site-energy of a tight-binding quantum model and
n ≤ n0. Then there exists C > 0 and ρ > 1, both depending only
on n0, V q and the temperature T , such that for any m ∈ N there
exists pm ∈ Prot ∩ Pperm of degree m such that

sup
u:maxi∥ui∥<R

|V q(u)− pm(u)|< Cρ−m.
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Representability

Theorem (Shapeev)

The polynomials Bα form a spanning set of the linear space
Prot ∩ Pperm ⊂ P.
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The Cutoff Function

To obtain smoothness at some Rcut > 0, we de ne

f̂µ,ν(r) :=

{
r−ν−2+µ(Rcut − r)2 r < rcut

0 r ≥ Rcut

and de ne the function f either by ortho-normalizing the f̂ on
the interval [Rmin, Rcut] with some weight or by setting

fµ,ν(r) := Cµf̂µ,ν(r)

with Cµ being the µ-th Chebyshev polynomial. Then

Mµ,ν(u) :=

n∑
i=1

fµ,ν(∥ui∥)u⊗ν
i

yields the desired property.
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Training the Model

For some xed set A of α and a training set containing
con gurations indexed by k = 1, . . ., the least squares system
reads

N(k)∑
i=1

∑
α∈A

cαBα(Dx
(k)
i ) = E(k)

∂

∂x
(k)
j

N(k)∑
i=1

∑
α∈A

cαBα(Dx
(k)
i ) = −f

(k)
j ,

in matrix form with regularization

min
c
∥Mc− g∥l2+γ∥c∥l2 .
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Fitting and Prediction Error for Tungsten Dataset3
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3http://www.libatoms.org/Home/TungstenTrainingConfigurations

http://www.libatoms.org/Home/TungstenTrainingConfigurations
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Comparison to Other Potentials

Potential RMSE4 (eV/Å)
Morse 0.500
Tersoff 0.387
Sti.-We. 0.391
GAP 0.063
MTP 0.051

4Data for MTP from my experiments, rest of the data by Richard Palme, Fraunhofer SCAI-VMD
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The MTP for Systems of Several Particle Types

Idea: Encode the particle types via the cutoff function, for
example using their atomic number Z:

f (m)
µ,ν (rij ; i, j) := ZiZjfµ,ν(rij)
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Fitting and Prediction Error for Multi-Element Dataset
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Alternative Encoding of the Particle Types

Idea: Using a “more physical” quantity, like the electronegativity
χ instead of the atomic numbers:

f (m)
µ,ν (rij ; i, j) := χiχjfµ,ν(rij)
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Comparison of Fitting Errors
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Comparison of Prediction Errors
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Over tting
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Stronger Regularization
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Fitting Errors Revisited

Potential RMSE5 (eV/Å)
Morse 0.500
Sti.-We. 0.391
MTP, γ = 1e−9 0.051
MTP, γ = 1e−3 0.068
MTP, γ = 1e−2 0.075
MTP, γ = 1e−1 0.084

5Data for MTP from my experiments, rest of the data by Richard Palme, Fraunhofer SCAI-VMD
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Outlook

■ Find a better way to pick the hyper-parameter γ

■ Improve smoothness by using other norms for regularization
■ Consider empirical repulsive term, e.g. from Morse potential
■ Reduce the amount of required training data with active

learning (based on recent research6)
■ Consider using the invariant polynomials with other ML

techniques, such as neural networks

6Evgeny V Podryabinkin and Alexander V Shapeev (2017). “Active learning of linearly parametrized interatomic
potentials”. In: Computational Materials Science 140, pp. 171–180
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Thank you for your attention!

Questions?
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