Tobias Olbrich

Machine Learning for Many-body Potentials with Moment Tensors

Tobias Olbrich tobias.olbrich@scai.fraunhofer.de

Fraunhofer Institute for Algorithms and Scientific Computing SCAI Schloss Birlinghoven, 53754 Sankt Augustin, Germany

October 25, 2018

Tobias Olbrich



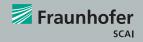
Outline

Introduction

Moment Tensor Potentials

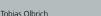
Numerical Results

Problems and Future Research



Setting

Given a system of atoms with Cartesian coordinates $\{x_1,\ldots,x_n\} \subset \mathbb{R}^3$ with atomic numbers $\{Z_1,\ldots,Z_n\}$, find the system's energy and its derivative wrt. the atoms' positions.





Setting

- Given a system of atoms with Cartesian coordinates $\{x_1, \ldots, x_n\} \subset \mathbb{R}^3$ with atomic numbers $\{Z_1, \ldots, Z_n\}$, find the system's energy and its derivative wrt. the atoms' positions.
- Mesoscale systems (thousands to hundreds of thousands of atoms).



Tobias Olbrich

Classical Approaches

- Ab-initio methods: generally too slow
- Empirical potentials, like Morse below: have trouble reaching the desired accuracy

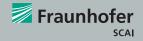
$$E(\{x_i\}) = \sum_{i < j} D_e \left[\exp(-2a(r_{ij} - r_e)) - 2\exp(-a(r_{ij} - r_e)) \right]$$

Machine Learning to the Rescue

Key ingredient for ML potentials: invariant descriptors of atomic environments.

¹ Albert Bartók (2010). The Gaussian Approximation Potential: An Interatomic Potential Derived from First Principles Quantum Mechanics. Springer Science & Business Media

² Jörg Behler (2011). "Atom-centered symmetry functions for constructing high-dimensional neural network potentials". In: *The Journal of chemical physics* 134.7, p. 074106



Tobias Olbrich

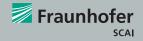
Machine Learning to the Rescue

Key ingredient for ML potentials: invariant descriptors of atomic environments.

- Gaussian approximation potentials¹ (GAP), using spherical harmonics and Gaussian kernels.
- Neural network potentials² (NNP), using a set of atom-centered symmetry functions and feed-forward neural networks.

¹ Albert Bartók (2010). The Gaussian Approximation Potential: An Interatomic Potential Derived from First Principles Quantum Mechanics. Springer Science & Business Media

² Jörg Behler (2011). "Atom-centered symmetry functions for constructing high-dimensional neural network potentials". In: *The Journal of chemical physics* 134.7, p. 074106



Tobias Olbrich

Machine Learning to the Rescue

Key ingredient for ML potentials: invariant descriptors of atomic environments.

- Gaussian approximation potentials¹ (GAP), using spherical harmonics and Gaussian kernels.
- Neural network potentials² (NNP), using a set of atom-centered symmetry functions and feed-forward neural networks.

Systematically improvable (given enough training data), but still slow.

¹ Albert Bartók (2010). The Gaussian Approximation Potential: An Interatomic Potential Derived from First Principles Quantum Mechanics. Springer Science & Business Media

² Jörg Behler (2011). "Atom-centered symmetry functions for constructing high-dimensional neural network potentials". In: *The Journal of chemical physics* 134.7, p. 074106

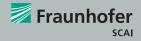
Tobias Olbrich

Introduction

Moment Tensor Potentials

Numerical Results

Problems and Future Research



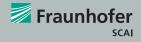
Tobias Olbrich

Basic Idea

- Find invariant polynomial p(u) that approximates the site energy V(u).
- For that, construct set of basis polynomials $b_i \in \mathbb{P}_{perm} \cap \mathbb{P}_{rot}$.
- Then, learn coefficients c_i and set

$$p(u) \coloneqq \sum_{i} c_i b_i(u).$$

Alexander V Shapeev (2016). "Moment tensor potentials: A class of systematically improvable interatomic potentials". In: Multiscale Modeling & Simulation 14.3, pp. 1153–1173



Tobias Olbrich

Moment Tensors

For $\mu, \nu \in \mathbb{N}$, define the moment tensors by

$$M_{\mu,\nu}(u) \coloneqq \sum_{i} \|u_i\|^{2\mu} u_i^{\otimes \nu},$$

where

$$u_i^{\otimes \nu} = \underbrace{u_i \otimes \ldots \otimes u_i}_{\nu \text{ times}}$$

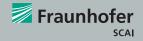
is the ν -fold Kronecker product.



Tobias Olbrich

The Basis Polynomials

- The final basis functions B_α are constructed as invariant polynomials of the entries of the moment tensors
- Efficient evaluation is possible by using symmetry of the tensors and common sub-terms



Tobias Olbrich

Approximation Error Estimate

Theorem (Shapeev)

Let V^q the site-energy of a tight-binding quantum model and $n \leq n_0$. Then there exists C > 0 and $\rho > 1$, both depending only on n_0 , V^q and the temperature T, such that for any $m \in \mathbb{N}$ there exists $p_m \in \mathbb{P}_{rot} \cap \mathbb{P}_{perm}$ of degree m such that

$$\sup_{u: \max_i \|u_i\| < R} |V^q(u) - p_m(u)| < C\rho^{-m}.$$



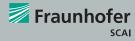
Tobias Olbrich

Representability

Theorem (Shapeev)

The polynomials B_{α} form a spanning set of the linear space $\mathbb{P}_{rot} \cap \mathbb{P}_{perm} \subset \mathbb{P}$.

Tobias Olbrich



Outline

Introduction

Moment Tensor Potentials

Numerical Results

Problems and Future Research

The Cutoff Function

To obtain smoothness at some $R_{cut} > 0$, we define

$$\hat{f}_{\mu,\nu}(r) \coloneqq \begin{cases} r^{-\nu-2+\mu}(R_{cut}-r)^2 & r < r_{cut} \\ 0 & r \ge R_{cut} \end{cases}$$

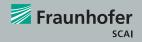
and define the function f either by ortho-normalizing the \hat{f} on the interval $[R_{min}, R_{cut}]$ with some weight or by setting

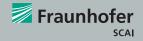
$$f_{\mu,\nu}(r) \coloneqq C_{\mu}\hat{f}_{\mu,\nu}(r)$$

with C_{μ} being the μ -th Chebyshev polynomial. Then

$$M_{\mu,\nu}(u) \coloneqq \sum_{i=1}^{n} f_{\mu,\nu}(\|u_i\|) u_i^{\otimes \nu}$$

vields the desired property.





Tobias Olbrich

Training the Model

For some fixed set A of α and a training set containing configurations indexed by $k = 1, \ldots$, the least squares system reads

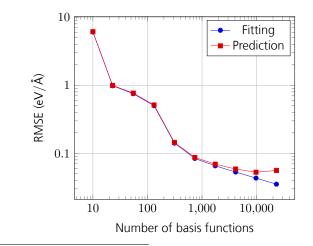
$$\sum_{i=1}^{N^{(k)}} \sum_{\alpha \in A} c_{\alpha} B_{\alpha}(Dx_i^{(k)}) = E^{(k)}$$
$$\frac{\partial}{\partial x_j^{(k)}} \sum_{i=1}^{N^{(k)}} \sum_{\alpha \in A} c_{\alpha} B_{\alpha}(Dx_i^{(k)}) = -f_j^{(k)},$$

in matrix form with regularization

$$\min_{c} \|Mc - g\|_{l_2} + \gamma \|c\|_{l_2}.$$

Tobias Olbrich

Fitting and Prediction Error for Tungsten Dataset³



³http://www.libatoms.org/Home/TungstenTrainingConfigurations

Tobias Olbrich

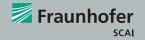


Comparison to Other Potentials

Potential	$RMSE^4$ (eV/Å)
Morse	0.500
Tersoff	0.387
StiWe.	0.391
GAP	0.063
MTP	0.051

⁴Data for MTP from my experiments, rest of the data by Richard Palme, Fraunhofer SCAI-VMD

Tobias Olbrich



The MTP for Systems of Several Particle Types

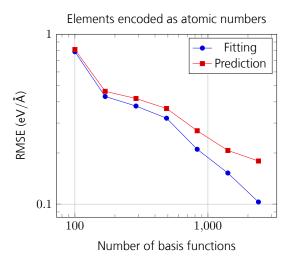
Idea: Encode the particle types via the cutoff function, for example using their atomic number *Z*:

$$f_{\mu,\nu}^{(m)}(r_{ij};i,j) \coloneqq Z_i Z_j f_{\mu,\nu}(r_{ij})$$

Tobias Olbrich

Fraunhofer

Fitting and Prediction Error for Multi-Element Dataset

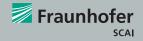


Tobias Olbrich

Alternative Encoding of the Particle Types

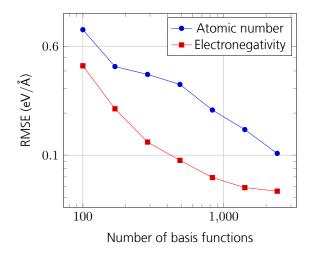
Idea: Using a "more physical" quantity, like the electronegativity χ instead of the atomic numbers:

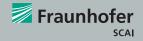
$$f_{\mu,\nu}^{(m)}(r_{ij};i,j) \coloneqq \chi_i \chi_j f_{\mu,\nu}(r_{ij})$$



Tobias Olbrich

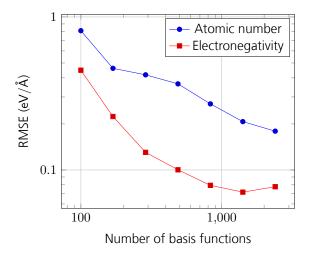
Comparison of Fitting Errors



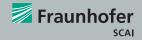


Tobias Olbrich

Comparison of Prediction Errors



Tobias Olbrich



Outline

Introduction

Moment Tensor Potentials

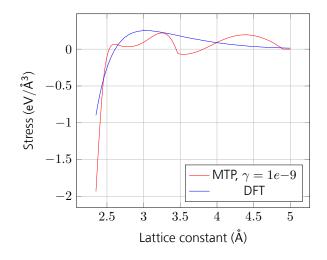
Numerical Results

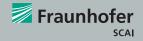
Problems and Future Research



Tobias Olbrich

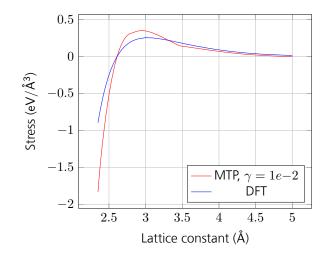
Overfitting



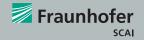


Tobias Olbrich

Stronger Regularization



Tobias Olbrich

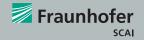


Fitting Errors Revisited

Potential	$RMSE^5$ (eV/Å)
Morse	0.500
StiWe.	0.391
MTP, $\gamma = 1e - 9$	0.051
MTP, $\gamma = 1e - 3$	0.068
MTP, $\gamma = 1e{-2}$	0.075
MTP, $\gamma = 1e - 1$	0.084

⁵Data for MTP from my experiments, rest of the data by Richard Palme, Fraunhofer SCAI-VMD

Tobias Olbrich

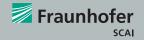


Outlook

• Find a better way to pick the hyper-parameter γ

⁶Evgeny V Podryabinkin and Alexander V Shapeev (2017). "Active learning of linearly parametrized interatomic potentials". In: Computational Materials Science 140, pp. 171–180

Tobias Olbrich



- Find a better way to pick the hyper-parameter γ
- Improve smoothness by using other norms for regularization

⁶Evgeny V Podryabinkin and Alexander V Shapeev (2017). "Active learning of linearly parametrized interatomic potentials". In: Computational Materials Science 140, pp. 171–180

- Find a better way to pick the hyper-parameter γ
- Improve smoothness by using other norms for regularization
- Consider empirical repulsive term, e.g. from Morse potential

⁶Evgeny V Podryabinkin and Alexander V Shapeev (2017). "Active learning of linearly parametrized interatomic potentials". In: Computational Materials Science 140, pp. 171–180

Tobias Olbrich

- Find a better way to pick the hyper-parameter γ
- Improve smoothness by using other norms for regularization
- Consider empirical repulsive term, e.g. from Morse potential
- Reduce the amount of required training data with active learning (based on recent research⁶)

⁶Evgeny V Podryabinkin and Alexander V Shapeev (2017). "Active learning of linearly parametrized interatomic potentials". In: Computational Materials Science 140, pp. 171–180

Tobias Olbrich

- Find a better way to pick the hyper-parameter γ
- Improve smoothness by using other norms for regularization
- Consider empirical repulsive term, e.g. from Morse potential
- Reduce the amount of required training data with active learning (based on recent research⁶)
- Consider using the invariant polynomials with other ML techniques, such as neural networks

⁶Evgeny V Podryabinkin and Alexander V Shapeev (2017). "Active learning of linearly parametrized interatomic potentials". In: *Computational Materials Science* 140, pp. 171–180

Tobias Olbrich

Thank you for your attention! Questions?