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Setting

® Given a system of atoms with Cartesian coordinates
{x1,...,2,} C R with atomic numbers {Z1, ..., Z,}, find
the system’s energy and its derivative wrt. the atoms’
positions.
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Setting

® Given a system of atoms with Cartesian coordinates
{x1,...,2,} C R with atomic numbers {Z1, ..., Z,}, find
the system’s energy and its derivative wrt. the atoms’
positions.

m Mesoscale systems (thousands to hundreds of thousands of
atoms).
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Classical Approaches

m Ab-initio methods: generally too slow

m Empirical potentials, like Morse below: have trouble reaching
the desired accuracy

E({zi}) = ) De [exp(—2a(ri; —re)) — 2exp(—a(ri; —re))]

1<j
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Machine Learning to the Rescue

Key ingredient for ML potentials: invariant descriptors of atomic
environments.

" Albert Bartok (2010). The Gaussian Approximation Potential: An Interatomic Potential Derived from First Principles
Quantum Mechanics. Springer Science & Business Media

2Jijrg Behler (2011). “Atom-centered symmetry functions for constructing high-dimensional neural network
potentials”. In: The Journal of chemical physics 134.7, p. 074106
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Machine Learning to the Rescue

Key ingredient for ML potentials: invariant descriptors of atomic
environments.

= Gaussian approximation potentials' (GAP), using spherical
harmonics and Gaussian kernels.

= Neural network potentials? (NNP), using a set of
atom-centered symmetry functions and feed-forward neural
networks.
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Machine Learning to the Rescue

Key ingredient for ML potentials: invariant descriptors of atomic
environments.
= Gaussian approximation potentials' (GAP), using spherical
harmonics and Gaussian kernels.

= Neural network potentials? (NNP), using a set of
atom-centered symmetry functions and feed-forward neural
networks.

Systematically improvable (given enough training data), but still
slow.

" Albert Bartok (2010). The Gaussian Approximation Potential: An Interatomic Potential Derived from First Principles
Quantum Mechanics. Springer Science & Business Media

2Jijrg Behler (2011). “Atom-centered symmetry functions for constructing high-dimensional neural network
potentials”. In: The Journal of chemical physics 134.7, p. 074106
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Basic Idea

® Find invariant polynomial p(u) that approximates the site
energy V(u).

® For that, construct set of basis polynomials b; € Pperm N Prot.

®m Then, learn coefficients ¢; and set

p(u) = Z cibi(u).

Alexander V Shapeev (2016). “Moment tensor potentials: A class of systematically improvable interatomic
potentials”. In: Multiscale Modeling & Simulation 14.3, pp. 1153-1173



Machine Learning for Many-body —
Potentials with Moment Tensors 7 Fraunhofer

SCAI
Tobias Olbrich

Moment Tensors

For u,v € N, define the moment tensors by
My (u) = [l P,
i

where

u?”:m@...@ui
————
v times

is the v-fold Kronecker product.
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The Basis Polynomials

m The final basis functions B, are constructed as invariant
polynomials of the entries of the moment tensors

m Efficient evaluation is possible by using symmetry of the
tensors and common sub-terms
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Approximation Error Estimate

Theorem (Shapeev)

Let V1 the site-energy of a tight-binding quantum model and

n < ng. Then there exists C' > 0 and p > 1, both depending only
on ng, V2 and the temperature T, such that for any m € N there
exists pm, € Prot N Pperm Of degree m such that

sup  [V9(u) = pm(u)[< Cp™™.

w: max;||u; || <R



Representability

Theorem (Shapeev)

The polynomials B,, form a spanning set of the linear space
]P)’I'Ot N ]P)perm C P.
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The Cutoff Function

To obtain smoothness at some R.,; > 0, we define

£ T7V72+u(chtt - T)Q r < Tcut
fu,u(r) =
0 > Rewt

and define the function f either by ortho-normalizing the f on
the interval [Ryin, Reut] With some weight or by setting

fuw(r) = C/tﬁt#(”
with C), being the p-th Chebyshev polynomial. Then

Muw(u) = qu,V(Hqu)uz@V
=1

yields the desired property.
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Training the Model

For some fixed set A of o and a training set containing

configurations indexed by k = 1,.. ., the least squares system
reads
N (k)

>3 caBa(Def?) = EW

=1 a€A
N(k)

0
'k) Z Z a3 = _fj(k)’

i=1 acA

in matrix form with regularization

mcinHMc — gl +llellis-
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Fitting and Prediction Error for Tungsten Dataset?
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3http ://www.libatoms.org/Home/TungstenTrainingConfigurations


http://www.libatoms.org/Home/TungstenTrainingConfigurations
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Comparison to Other Potentials

Potential RMSE* (eV/A)

Morse 0.500
Tersoff 0.387
Sti.-We.  0.391
GAP 0.063
MTP 0.051

“4Data for MTP from my experiments, rest of the data by Richard Palme, Fraunhofer SCAI-VMD
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The MTP for Systems of Several Particle Types

Idea: Encode the particle types via the cutoff function, for
example using their atomic number Z:

f,%) (rijii,J) = ZiZj frup(rij)
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Fitting and Prediction Error for Multi-Element Dataset

Elements encoded as atomic numbers
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Alternative Encoding of the Particle Types

Idea: Using a “more physical” quantity, like the electronegativity
x instead of the atomic numbers:

f,S’,Z) (rij39,7) = XiX;j fup(Tiz)
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Comparison of Fitting Errors
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0.6 | —=—Electronegativity |

RMSE (eV/A)

0.1

100 1,000
Number of basis functions




Machine Learning for Many-body —
Potentials with Moment Tensors 7 Fraunhofer

SCAI
Tobias Olbrich

Comparison of Prediction Errors
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Stronger Regularization
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Fitting Errors Revisited

Potential RMSE® (eV/A)
Morse 0.500
Sti.-We. 0.391

MTP, v = 1e—9 0.051
MTP, v = 1e—3 0.068
MTP, v = 1le—2 0.075
MTP, v = 1le—1 0.084

5Data for MTP from my experiments, rest of the data by Richard Palme, Fraunhofer SCAI-VMD



Outlook

® Find a better way to pick the hyper-parameter ~

SEvgeny V Podryabinkin and Alexander V Shapeev (2017). “Active learning of linearly parametrized interatomic
potentials”. In: Computational Materials Science 140, pp. 171-180
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Outlook

® Find a better way to pick the hyper-parameter ~
® Improve smoothness by using other norms for regularization

6Evgeny V Podryabinkin and Alexander V Shapeev (2017). “Active learning of linearly parametrized interatomic
potentials”. In: Computational Materials Science 140, pp. 171-180
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Outlook

® Find a better way to pick the hyper-parameter ~
® Improve smoothness by using other norms for regularization
m Consider empirical repulsive term, e.g. from Morse potential

6Evgeny V Podryabinkin and Alexander V Shapeev (2017). “Active learning of linearly parametrized interatomic
potentials”. In: Computational Materials Science 140, pp. 171-180
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Outlook
® Find a better way to pick the hyper-parameter ~

Improve smoothness by using other norms for regularization

Consider empirical repulsive term, e.g. from Morse potential

Reduce the amount of required training data with active
learning (based on recent research®)

6Evgeny V Podryabinkin and Alexander V Shapeev (2017). “Active learning of linearly parametrized interatomic
potentials”. In: Computational Materials Science 140, pp. 171-180
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Outlook

Find a better way to pick the hyper-parameter ~

Improve smoothness by using other norms for regularization

Consider empirical repulsive term, e.g. from Morse potential

Reduce the amount of required training data with active
learning (based on recent research®)

Consider using the invariant polynomials with other ML
techniques, such as neural networks

6Evgeny V Podryabinkin and Alexander V Shapeev (2017). “Active learning of linearly parametrized interatomic
potentials”. In: Computational Materials Science 140, pp. 171-180



Thank you for your attention!

Questions?
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