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Electronic Schrödinger equation

N-electron Schrödinger equation (PDE in 3N dim)

HΨ :=
(
− 1

2∆ +
∑

1≤i<j≤N

1
|xi−xj | +

N∑
i=1

v(xi)
)

Ψ = EΨ

Ψ = Ψ(x1, s1, . . . , xN , sN ) ∈ L2
a

(
(R× Z2)N

)
|Ψ(x1, s1, . . . , xN , sN )|2 prob. density of electron positions ∈ R3 and spins ∈ Z2

external potential v(x) = −
M∑
α=1

Zα
|x−Rα| encodes chemistry (atom type)

Curse of dimension
small proteins (N = 5000), R→ 10-grid points  1015000 gridpts

Need high accuracy:
Chemmical/biological behaviour ∼ energy differences � total energies E

Dream (theory): Find solution manifold which breaks curse of dim
Dream (numerics): efficient algorithm for controlled approximations
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Binding energy of N2
Example (Friesecke, SIAM Talk Slides 2021)

Curse of dimension:
N = 14 electrons  Schrödinger equation PDE in R42

10 grid-points in each direction  1042 gridpoints

Need high accuracy:
basic chemistry (binding) begins in 4th digit of lowest eigenvalue

-109.282174 a.u. ground state energy (experiment)
-109.282160 a.u. state of the art simulation (QC-DMRG)
-108.923634 a.u. energy of two non-bounded nitrogen atoms

Values [WVN14] (similar results [CKG04])
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Classical methods: FCI and MCSCF

1. Single-particle space (standard finite Galerkin – choosing orbitals):
L2(R3 × Z2) ≈ span

{
ϕ1 . . . ϕL

}
2. N-particle space (associated tensor product – FCI space):
L2
a

(
(R3 × Z2)N

)
≈ span

{∣∣ϕi1 . . . ϕiN 〉 ∣∣1 ≤ i1 < . . . < iN ≤ L
}

=: VN,L dim =
(L
N

)
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Figure 1: Schematic picture of FCI space
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Classical methods: FCI and MCSCF

1. Single-particle space (standard finite Galerkin – choosing orbitals):
L2(R3 × Z2) ≈ span

{
ϕ1 . . . ϕL

}
2. N-particle space (associated tensor product – FCI space):
L2
a

(
(R3 × Z2)N

)
≈ span

{∣∣ϕi1 . . . ϕiN 〉 ∣∣1 ≤ i1 < . . . < iN ≤ L
}

=: VN,L dim =
(L
N

)
FCI: Fix orbitals (Hartree-Fock), minimize Rayleigh quotient over expansion coefficients

ΨFCI = argmin
{ 〈Ψ,HΨ〉
〈Ψ,Ψ〉

∣∣Ψ ∈ VN,L}
MCSCF: Minimize Rayleigh quotient over both orbitals and expansion coefficients

ΨMSSCF = argmin
{ 〈Ψ,HΨ〉
〈Ψ,Ψ〉

∣∣Ψ ∈ VN,L(ϕi), ϕi ∈ H1(R3), 〈ϕi, ϕj〉 = δij
}

Do not break curse of dimension. Unfeasible for computations beyond small number of

electrons
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Low-rank approximation

3. Low-rank approximation (CP-format – separation of variable):

Ψ ≈
M∑
ν=1

∣∣a(ν)
1 a

(ν)
2 · · · a

(ν)
N 〉, a

(ν)
i ∈ span{ϕ1, . . . , ϕL} dim = M ·N · L
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1 a

(ν)
2 · · · a

(ν)
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(ν)
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Positive results

asypmotically exact with small M for atomic ions with large nuclear charge
[FG10]

small error for Lu = f with smooth f in high dimension [DDGS16]
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3. Low-rank approximation (CP-format – separation of variable):

Ψ ≈
M∑
ν=1

∣∣a(ν)
1 a

(ν)
2 · · · a

(ν)
N 〉, a

(ν)
i ∈ span{ϕ1, . . . , ϕL} dim = M ·N · L

Did not work well in practice

Need a ton of terms Kato [Kat57]

Eigenstates of Schrödinger equ. nonsmooth Ψ ∼ |xi − xj | (xi → xj)

Too hard to compute Hillar, Lim [HL13]

“Most tensor problems are NP-hard”

Approximation manifold not closed for N ≥ 3 DeSilva, Lim [DSL08]

“Tensor rank and ill-posedness of the best low-rank approximation problem”
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QC-DMRG – Definitions

1. Occupation representation (Fock space point of view)

|ϕ2ϕ3ϕ6ϕ8〉 ←→ Φ01100101,

ϕ1 ϕ2 ϕL

Ψ =
1∑

µ1,...,µL=0
Cµ1,...,µLΦµ1,...,µL dim = 2L =

∑
N=0

(L
N

)

2. Matrix product states/ tensor-trains

Cµ1,...,µL ≈
M∑

α1,...,αL−1=1
A1[µ1]α1︸ ︷︷ ︸

1×M

A2[µ2]α1,α2︸ ︷︷ ︸
M×M

· · ·AL[µL]αL−1︸ ︷︷ ︸
M×1

dim = L ·M2 · 2

µ1 µ2 µ3 µL

A1 A2 A3 AL

α1 α2 αL-1

Figure 1: µi physical variables (occupation); αi virtual variables (contracted)
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QC-DMRG – Properties

Minimize Rayleigh quotient over QC-DMRG ansatz
standard algorithm: DMRG (origin:spin chains), hence name of method

Truncate each Aj via SVD to a reasonable size M (M ≈ 2000− 5000)
Theory: ansatz exact for M ≥ max

k=1,...,L−1
rankC

µ1...µk
µk+1...µL

Parameter M interpolates between HF and FCI
HF: M = 1, FCI: M = 2L/2

Format approximates solutions to el. Schrödinger eq. well for moderate M
depends on choice of underlying tensor network

Approximation manifold closed
if network has no loops

good reviews: Schollwoeck [Sch11] MPS, Szalay et al. [SPM+15] QC-DMRG
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Choosing the network

Within the tensor-train format and for fixed orbitals, the fundamental issue of
choosing the network boils down to choosing the ordering.

Figure 2: Schematic picture of a MPS before and after reordering the orbitals
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Orderings matter

Fermionic Bell states: example with L = 2N [GF21]∣∣∣∣ϕ1+ϕN+1√
2

ϕ2+ϕN+2√
2

. . . ϕN+ϕ2N√
2

〉
requires bond-dimension 2N

New ordering ϕ1, ϕN+1, ϕ2, ϕN+2, . . .  bond-dimension 2

Current method Fiedler ordering [BLMR11]
concepts from QIT and spectral graph theory

Find permutation that maximizes quantum mutual information

New method BWPO [DF21]
Relies on inversion symmetry for singular values of Slater determinants

tailored to Quantum Chemistry
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How can we gain with optimal orderings?

Maximally entangled state:
ΨP =

∑
i1<...<iN

λi1,...,iN |ϕi1 . . . ϕiN 〉

coefficients λi1,...,iN are mutually different elements of P = {√pj : pj prime}
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∑
i1<...<iN

λi1,...,iN |ϕi1 . . . ϕiN 〉

coefficients λi1,...,iN are mutually different elements of P = {√pj : pj prime}

Theorem (Max. entangled MPS [GF21])

States of the type ΨP require in every step the maximal bond-dim of
min{2j , 2L−j} regardless of the chosen ordering.
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How can we gain with optimal orderings?

Maximally entangled state:
ΨP =

∑
i1<...<iN

λi1,...,iN |ϕi1 . . . ϕiN 〉

coefficients λi1,...,iN are mutually different elements of P = {√pj : pj prime}

Figure 3: Singular values of C
µ1...µL/2
µL/2+1...µL , N = 8, L = 16;

left sum of 2 Slaters wights 0.9 and 0.1 (mean solid, ribbon 0.75 quantile) [DF21];
right max. entangled state ΨP [GF21]
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Unitary transformations instead of orderings

Arbitrary fermionic mode transformations: [FG21]
single-particle reduced density matrix γΨ : HL → HL defined by

〈Ψ, a†(ϕi)a(ϕj)Ψ〉 = 〈ϕj , γΨϕi〉 for all i, j.

Expand Ψ in eigenbasis of γΨ (natural orbitals) [CY00]:

In two-particle case (N = 2), this gives nice structure
 find explicit matrices such that max. bond-dim ≤ 3

lower bound guarantees bond-dim. 3 necessary

(analyze structure of general unfoldings)
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Complete characterization in the Two-particle case

Theorem (Characterization Two-particle case [FG21])

Suppose L ≥ 4 even, Ψ ∈ V2,L, and γΨ has maximal rank = L.
Then, for any basis {ϕ1, ...., ϕL} and any MPS-representation with bond dimensions
(r1, . . . , rL−1) we have

rj ≥ 2 for every j ∈ {1, . . . , L− 1}
At least one of two consecutive elements (rj , rj+1) for j ∈ {2, . . . , L− 2} is at
least 3.

(r1, ..., rL−1) with lowest `1-norm is (2, 2, 3, . . . , 2, 3︸ ︷︷ ︸
L−4 times

, 2, 2)

Corollary

For two-electron systems, QC-DMRG with optimal fermionic mode
transformation is exact for bond-dim M = 3.

The results also hold for the full two-electron Hilbert space L2
a

(
(R3 × Z2)2

)
, in

which case an MPS of bond-dim M is a half-infinite chain of M ×M matrices.
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Summary & open problems

tensor network methods are fast becoming one state-of-art method
(system sizes up to 50 electrons)
theory still lacking  optimizing network promising direction

Questions concerning orderings

How rare are states like ΨP? Results about average states?
Are there states with SVs independent of re-ordering?
Improved result about certain class of states (GS of nice Hamiltonian)?

Unitary transformations useful in practice? (more expansive!)
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