Maximal entanglement and low-rank approximability by Matrix Product States

Benedikt R. Graswald
Joint work with Gero Friesecke
Technische Universität München

MOANSI September 16 \& 17, 2021

Electronic Schrödinger equation

\mathbf{N}-electron Schrödinger equation (PDE in 3 N dim)

$H \Psi:=\left(-\frac{1}{2} \Delta+\sum_{1 \leq i<j \leq N} \frac{1}{\left|x_{i}-x_{j}\right|}+\sum_{i=1}^{N} v\left(x_{i}\right)\right) \Psi=E \Psi$
$\Psi=\Psi\left(x_{1}, s_{1}, \ldots, x_{N}, s_{N}\right) \in L_{a}^{2}\left(\left(\mathbb{R} \times \mathbb{Z}_{2}\right)^{N}\right)$
$\left|\Psi\left(x_{1}, s_{1}, \ldots, x_{N}, s_{N}\right)\right|^{2}$ prob. density of electron positions $\in \mathbb{R}^{3}$ and spins $\in \mathbb{Z}_{2}$ external potential $v(x)=-\sum_{\alpha=1}^{M} \frac{Z_{\alpha}}{\left|x-R_{\alpha}\right|}$ encodes chemistry (atom type)

Electronic Schrödinger equation

N -electron Schrödinger equation (PDE in 3 N dim)
$H \Psi:=\left(-\frac{1}{2} \Delta+\sum_{1 \leq i<j \leq N} \frac{1}{\left|x_{i}-x_{j}\right|}+\sum_{i=1}^{N} v\left(x_{i}\right)\right) \Psi=E \Psi$
$\Psi=\Psi\left(x_{1}, s_{1}, \ldots, x_{N}, s_{N}\right) \in L_{a}^{2}\left(\left(\mathbb{R} \times \mathbb{Z}_{2}\right)^{N}\right)$
$\left|\Psi\left(x_{1}, s_{1}, \ldots, x_{N}, s_{N}\right)\right|^{2}$ prob. density of electron positions $\in \mathbb{R}^{3}$ and spins $\in \mathbb{Z}_{2}$
external potential $v(x)=-\sum_{\alpha=1}^{M} \frac{Z_{\alpha}}{\left|x-R_{\alpha}\right|}$ encodes chemistry (atom type)

Curse of dimension

small proteins $(N=5000), \mathbb{R} \rightarrow 10$-grid points $\rightsquigarrow 10^{15000}$ gridpts
Need high accuracy:
Chemmical/biological behaviour \sim energy differences \ll total energies E

Electronic Schrödinger equation

\mathbf{N}-electron Schrödinger equation (PDE in $3 N$ dim)
$H \Psi:=\left(-\frac{1}{2} \Delta+\sum_{1 \leq i<j \leq N} \frac{1}{\left|x_{i}-x_{j}\right|}+\sum_{i=1}^{N} v\left(x_{i}\right)\right) \Psi=E \Psi$
$\Psi=\Psi\left(x_{1}, s_{1}, \ldots, x_{N}, s_{N}\right) \in L_{a}^{2}\left(\left(\mathbb{R} \times \mathbb{Z}_{2}\right)^{N}\right)$
$\left|\Psi\left(x_{1}, s_{1}, \ldots, x_{N}, s_{N}\right)\right|^{2}$ prob. density of electron positions $\in \mathbb{R}^{3}$ and spins $\in \mathbb{Z}_{2}$ external potential $v(x)=-\sum_{\alpha=1}^{M} \frac{Z_{\alpha}}{\left|x-R_{\alpha}\right|}$ encodes chemistry (atom type)

Curse of dimension

small proteins $(N=5000), \mathbb{R} \rightarrow 10$-grid points $\rightsquigarrow 10^{15000}$ gridpts

Need high accuracy:

Chemmical/biological behaviour \sim energy differences \ll total energies E
Dream (theory): Find solution manifold which breaks curse of dim
Dream (numerics): efficient algorithm for controlled approximations

Binding energy of N_{2}

Example (Friesecke, SIAM Talk Slides 2021)

Curse of dimension:
$N=14$ electrons \rightsquigarrow Schrödinger equation PDE in \mathbb{R}^{42} 10 grid-points in each direction $\rightsquigarrow 10^{42}$ gridpoints

Binding energy of N_{2}

Example (Friesecke, SIAM Talk Slides 2021)

Curse of dimension:

$N=14$ electrons \rightsquigarrow Schrödinger equation PDE in \mathbb{R}^{42}
10 grid-points in each direction $\rightsquigarrow 10^{42}$ gridpoints

Need high accuracy:

basic chemistry (binding) begins in 4th digit of lowest eigenvalue

$$
\begin{array}{c|c}
-109.282174 \text { a.u. } & \text { ground state energy (experiment) } \\
-109.282160 \text { a.u. } & \text { state of the art simulation (QC-DMRG) } \\
-108.923634 \text { a.u. } & \text { energy of two non-bounded nitrogen atoms }
\end{array}
$$

Values [WVN14] (similar results [CKG04])

Classical methods: FCI and MCSCF

1. Single-particle space (standard finite Galerkin - choosing orbitals):
$L^{2}\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right) \approx \operatorname{span}\left\{\varphi_{1} \ldots \varphi_{L}\right\}$
2. N-particle space (associated tensor product - FCl space):
$L_{a}^{2}\left(\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)^{N}\right) \approx \operatorname{span}\left\{\left|\varphi_{i_{1}} \ldots \varphi_{i_{N}}\right\rangle \mid 1 \leq i_{1}<\ldots<i_{N} \leq L\right\}=: \mathcal{V}_{N, L} \quad \operatorname{dim}=\binom{L}{N}$

Classical methods: FCI and MCSCF

1. Single-particle space (standard finite Galerkin - choosing orbitals):
$L^{2}\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right) \approx \operatorname{span}\left\{\varphi_{1} \ldots \varphi_{L}\right\}$
2. N-particle space (associated tensor product -FCl space):
$L_{a}^{2}\left(\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)^{N}\right) \approx \operatorname{span}\left\{\left|\varphi_{i_{1}} \ldots \varphi_{i_{N}}\right\rangle \mid 1 \leq i_{1}<\ldots<i_{N} \leq L\right\}=: \mathcal{V}_{N, L} \quad \operatorname{dim}=\binom{L}{N}$

Figure 1: Schematic picture of FCI space

Classical methods: FCI and MCSCF

1. Single-particle space (standard finite Galerkin - choosing orbitals):
$L^{2}\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right) \approx \operatorname{span}\left\{\varphi_{1} \ldots \varphi_{L}\right\}$
2. N-particle space (associated tensor product - FCl space):
$L_{a}^{2}\left(\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)^{N}\right) \approx \operatorname{span}\left\{\left|\varphi_{i_{1}} \ldots \varphi_{i_{N}}\right\rangle \mid 1 \leq i_{1}<\ldots<i_{N} \leq L\right\}=: \mathcal{V}_{N, L} \quad \operatorname{dim}=\binom{L}{N}$
FCI: Fix orbitals (Hartree-Fock), minimize Rayleigh quotient over expansion coefficients $\Psi_{\mathrm{FCI}}=\operatorname{argmin}\left\{\left.\frac{\langle\Psi, H \Psi\rangle}{\langle\Psi, \Psi\rangle} \right\rvert\, \Psi \in \mathcal{V}_{N, L}\right\}$

MCSCF: Minimize Rayleigh quotient over both orbitals and expansion coefficients $\Psi_{\mathrm{MSSCF}}=\operatorname{argmin}\left\{\left.\frac{\langle\Psi, H \Psi\rangle}{\langle\Psi, \Psi\rangle} \right\rvert\, \Psi \in \mathcal{V}_{N, L}\left(\varphi_{i}\right), \varphi_{i} \in H^{1}\left(\mathbb{R}^{3}\right),\left\langle\varphi_{i}, \varphi_{j}\right\rangle=\delta_{i j}\right\}$

Do not break curse of dimension. Unfeasible for computations beyond small number of electrons

Low-rank approximation

3. Low-rank approximation (CP-format - separation of variable):
$\Psi \approx \sum_{\nu=1}^{M}\left|a_{1}^{(\nu)} a_{2}^{(\nu)} \cdots a_{N}^{(\nu)}\right\rangle, \quad a_{i}^{(\nu)} \in \operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{L}\right\}$
$\operatorname{dim}=M \cdot N \cdot L$

Low-rank approximation

3. Low-rank approximation (CP-format - separation of variable):
$\Psi \approx \sum_{\nu=1}^{M}\left|a_{1}^{(\nu)} a_{2}^{(\nu)} \cdots a_{N}^{(\nu)}\right\rangle, \quad a_{i}^{(\nu)} \in \operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{L}\right\}$
Positive results

- asypmotically exact with small M for atomic ions with large nuclear charge [FG10]
- small error for $L u=f$ with smooth f in high dimension [DDGS16]

Low-rank approximation

3. Low-rank approximation (CP-format - separation of variable):
$\Psi \approx \sum_{\nu=1}^{M}\left|a_{1}^{(\nu)} a_{2}^{(\nu)} \cdots a_{N}^{(\nu)}\right\rangle, \quad a_{i}^{(\nu)} \in \operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{L}\right\}$
Did not work well in practice

- Need a ton of terms Kato [Kat57]

Eigenstates of Schrödinger equ. nonsmooth $\Psi \sim\left|x_{i}-x_{j}\right|\left(x_{i} \rightarrow x_{j}\right)$

- Too hard to compute Hillar, Lim [HL13]
"Most tensor problems are NP-hard"
- Approximation manifold not closed for $N \geq 3$ DeSilva, Lim [DSL08]
"Tensor rank and ill-posedness of the best low-rank approximation problem"

QC-DMRG - Definitions

1. Occupation representation (Fock space point of view)

$$
\begin{aligned}
& \left|\varphi_{2} \varphi_{3} \varphi_{6} \varphi_{8}\right\rangle \longleftrightarrow \Phi_{01100101}, \\
& \Psi=\sum_{\mu_{1}, \ldots, \mu_{L}=0}^{1} C_{\mu_{1}, \ldots, \mu_{L}} \Phi_{\mu_{1}, \ldots, \mu_{L}}
\end{aligned}
$$

$$
\operatorname{dim}=2^{L}=\sum_{N=0}\binom{L}{N}
$$

QC-DMRG - Definitions

1. Occupation representation (Fock space point of view)
$\left|\varphi_{2} \varphi_{3} \varphi_{6} \varphi_{8}\right\rangle \longleftrightarrow \Phi_{01100101}$,

$\Psi=\sum_{\mu_{1}, \ldots, \mu_{L}=0}^{1} C_{\mu_{1}, \ldots, \mu_{L}} \Phi_{\mu_{1}, \ldots, \mu_{L}}$

$$
\operatorname{dim}=2^{L}=\sum_{N=0}\binom{L}{N}
$$

2. Matrix product states/ tensor-trains
$C_{\mu_{1}, \ldots, \mu_{L}} \approx \sum_{\alpha_{1}, \ldots, \alpha_{L-1}=1}^{M} \underbrace{A_{1}\left[\mu_{1}\right]_{\alpha_{1}}}_{1 \times M} \underbrace{A_{2}\left[\mu_{2}\right]_{\alpha_{1}, \alpha_{2}}}_{M \times M} \cdots \underbrace{A_{L}\left[\mu_{L}\right]_{\alpha_{L-1}}}_{M \times 1}$ $\operatorname{dim}=L \cdot M^{2} \cdot 2$

Figure 1: μ_{i} physical variables (occupation); α_{i} virtual variables (contracted)

QC-DMRG - Properties

- Minimize Rayleigh quotient over QC-DMRG ansatz standard algorithm: DMRG (origin:spin chains), hence name of method
- Truncate each A_{j} via SVD to a reasonable size $M(M \approx 2000-5000)$ Theory: ansatz exact for $M \geq \max _{k=1, \ldots, L-1} \operatorname{rank} C_{\mu_{k+1} \ldots \mu_{L}}^{\mu_{1} \ldots \mu_{k}}$
- Parameter M interpolates between HF and FCl HF: $M=1$, $\mathrm{FCI}: M=2^{L / 2}$
- Format approximates solutions to el. Schrödinger eq. well for moderate M depends on choice of underlying tensor network
- Approximation manifold closed if network has no loops
good reviews: Schollwoeck [Sch11] MPS, Szalay et al. [SPM ${ }^{+}$15] QC-DMRG

Choosing the network

Within the tensor-train format and for fixed orbitals, the fundamental issue of choosing the network boils down to choosing the ordering.

Figure 2: Schematic picture of a MPS before and after reordering the orbitals

Orderings matter

Fermionic Bell states: example with $L=2 N$ [GF21]
$\left|\frac{\varphi_{1}+\varphi_{N+1}}{\sqrt{2}} \frac{\varphi_{2}+\varphi_{N+2}}{\sqrt{2}} \ldots \frac{\varphi_{N}+\varphi_{2 N}}{\sqrt{2}}\right\rangle \quad$ requires bond-dimension 2^{N}
New ordering $\varphi_{1}, \varphi_{N+1}, \varphi_{2}, \varphi_{N+2}, \ldots \rightsquigarrow$ bond-dimension 2
Current method Fiedler ordering [BLMR11]
concepts from QIT and spectral graph theory
Find permutation that maximizes quantum mutual information

New method BWPO [DF21]

Relies on inversion symmetry for singular values of Slater determinants tailored to Quantum Chemistry

How can we gain with optimal orderings?

Maximally entangled state:

$\Psi_{\mathcal{P}}=\sum_{i_{1}<\ldots<i_{N}} \lambda_{i_{1}, \ldots, i_{N}}\left|\varphi_{i_{1}} \ldots \varphi_{i_{N}}\right\rangle$
coefficients $\lambda_{i_{1}, \ldots, i_{N}}$ are mutually different elements of $\mathcal{P}=\left\{\sqrt{p_{j}}: p_{j}\right.$ prime $\}$

How can we gain with optimal orderings?

Maximally entangled state:

$\Psi_{\mathcal{P}}=\sum_{i_{1}<\ldots<i_{N}} \lambda_{i_{1}, \ldots, i_{N}}\left|\varphi_{i_{1}} \ldots \varphi_{i_{N}}\right\rangle$
coefficients $\lambda_{i_{1}}, \ldots, i_{N}$ are mutually different elements of $\mathcal{P}=\left\{\sqrt{p_{j}}: p_{j}\right.$ prime $\}$

Theorem (Max. entangled MPS [GF21])

States of the type $\Psi_{\mathcal{P}}$ require in every step the maximal bond-dim of $\min \left\{2^{j}, 2^{L-j}\right\}$ regardless of the chosen ordering.

How can we gain with optimal orderings?

Maximally entangled state:

$\Psi_{\mathcal{P}}=\sum_{i_{1}<\ldots<i_{N}} \lambda_{i_{1}, \ldots, i_{N}}\left|\varphi_{i_{1}} \ldots \varphi_{i_{N}}\right\rangle$
coefficients $\lambda_{i_{1}, \ldots, i_{N}}$ are mutually different elements of $\mathcal{P}=\left\{\sqrt{p_{j}}: p_{j}\right.$ prime $\}$

Figure 3: Singular values of $C_{\mu_{L / 2+1} \ldots \mu_{L}}^{\mu_{1} \ldots \mu_{L / 2}}, N=8, L=16$;
left sum of 2 Slaters wights 0.9 and 0.1 (mean solid, ribbon 0.75 quantile) [DF21]; right max. entangled state $\Psi_{\mathcal{P}}$ [GF21]

Unitary transformations instead of orderings

Arbitrary fermionic mode transformations: [FG21] single-particle reduced density matrix $\gamma_{\Psi}: \mathcal{H}_{L} \rightarrow \mathcal{H}_{L}$ defined by

$$
\left\langle\Psi, a^{\dagger}\left(\varphi_{i}\right) a\left(\varphi_{j}\right) \Psi\right\rangle=\left\langle\varphi_{j}, \gamma_{\Psi} \varphi_{i}\right\rangle \quad \text { for all } i, j .
$$

Expand Ψ in eigenbasis of γ_{Ψ} (natural orbitals) [CY00]:
In two-particle case ($N=2$), this gives nice structure
\rightsquigarrow find explicit matrices such that max. bond-dim ≤ 3
lower bound guarantees bond-dim. 3 necessary (analyze structure of general unfoldings)

Complete characterization in the Two-particle case

Theorem (Characterization Two-particle case [FG21])

Suppose $L \geq 4$ even, $\Psi \in \mathcal{V}_{2, L}$, and γ_{Ψ} has maximal rank $=L$.
Then, for any basis $\left\{\varphi_{1}, \ldots, \varphi_{L}\right\}$ and any MPS-representation with bond dimensions $\left(r_{1}, \ldots, r_{L-1}\right)$ we have

- $r_{j} \geq 2$ for every $j \in\{1, \ldots, L-1\}$
- At least one of two consecutive elements $\left(r_{j}, r_{j+1}\right)$ for $j \in\{2, \ldots, L-2\}$ is at least 3.
$\left(r_{1}, \ldots, r_{L-1}\right)$ with lowest ℓ^{1}-norm is $(2, \underbrace{2,3, \ldots, 2,3}_{L-4 \text { times }}, 2,2)$

Corollary

For two-electron systems, $Q C$-DMRG with optimal fermionic mode transformation is exact for bond-dim $M=3$.

Complete characterization in the Two-particle case

Theorem (Characterization Two-particle case [FG21])

Suppose $L \geq 4$ even, $\Psi \in \mathcal{V}_{2, L}$, and γ_{Ψ} has maximal rank $=L$.
Then, for any basis $\left\{\varphi_{1}, \ldots, \varphi_{L}\right\}$ and any MPS-representation with bond dimensions $\left(r_{1}, \ldots, r_{L-1}\right)$ we have

- $r_{j} \geq 2$ for every $j \in\{1, \ldots, L-1\}$
- At least one of two consecutive elements $\left(r_{j}, r_{j+1}\right)$ for $j \in\{2, \ldots, L-2\}$ is at least 3.
$\left(r_{1}, \ldots, r_{L-1}\right)$ with lowest ℓ^{1}-norm is $(2, \underbrace{2,3, \ldots, 2,3}_{L-4 \text { times }}, 2,2)$

Corollary

For two-electron systems, $Q C$-DMRG with optimal fermionic mode transformation is exact for bond-dim $M=3$.

The results also hold for the full two-electron Hilbert space $L_{a}^{2}\left(\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)^{2}\right)$, in which case an MPS of bond-dim M is a half-infinite chain of $M \times M$ matrices.

Summary \& open problems

- tensor network methods are fast becoming one state-of-art method (system sizes up to 50 electrons) theory still lacking \rightsquigarrow optimizing network promising direction
- Questions concerning orderings
- How rare are states like $\Psi_{\mathcal{P}}$? Results about average states?
- Are there states with SVs independent of re-ordering?
- Improved result about certain class of states (GS of nice Hamiltonian)?
- Unitary transformations useful in practice? (more expansive!)

国 G．Barcza，Ö．Legeza，K．H．Marti，and M．Reiher．
Quantum－information analysis of electronic states of different molecular structures．
Phys．Rev．A．83：012508，Jan 2011.
圖 Garnet Kin－Lic Chan，Mihály Kállay，and Jürgen Gauss．
State－of－the－art density matrix renormalization group and coupled cluster theory studies of the nitrogen binding curve．
The Journal of chemical physics，121（13）：6110－6116， 2004.
固 Albert John Coleman and Vyacheslav I Yukalov．
Reduced density matrices：Coulson＇s challenge，volume 72 ． Springer Science \＆Business Media， 2000.
圈 Wolfgang Dahmen，Ronald Devore，Lars Grasedyck，and Endre Süli．
Tensor－sparsity of solutions to high－dimensional elliptic partial differential equations．
Foundations of Computational Mathematics，16（4）：813－874， 2016.
图 Mi－Song Dupuy and Gero Friesecke．
Inversion symmetry of singular values and a new orbital ordering method in tensor train approximations for quantum chemistry．
SIAM Journal on Scientific Computing，43（1）：B108－B131， 2021.
圖 Vin De Silva and Lek－Heng Lim．
Tensor rank and the ill－posedness of the best low－rank approximation problem．
SIAM Journal on Matrix Analysis and Applications，30（3）：1084－1127， 2008.
國 Mi－Song Dupuy．
Tensor－train－julia．
https：／／github．com／msdupuy／Tensor－Train－Julia， 2021.
国 G．Friesecke and B．D．Goddard．
Atomic structure via highly charged ions and their exact quantum states．
Phys．Rev．A，81：032516，Mar 2010.
圁 Gero Friesecke and Benedikt Graswald．
Two－electron wavefunctions are matrix product states withbond dimension three．
in preparation， 2021.
葍 Gero Friesecke．
The multiconfiguration equations for atoms and molecules：charge quantization and existence of solutions． Archive for rational mechanics and analysis，169（1）：35－71，2003．
国 Benedikt R Graswald and Gero Friesecke．
Electronic wavefunction with maximally entangled mps representation．
The European Physical Journal D，75（6）：1－4， 2021.
图 Christopher J Hillar and Lek－Heng Lim．
Most tensor problems are np－hard．
Journal of the ACM（JACM），60（6）：1－39， 2013.
图 Tosio Kato．
On the eigenfunctions of many－particle systems in quantum mechanics．
Communications on Pure and Applied Mathematics，10（2）：151－177， 1957.
图 Ulrich Schollwöck．
The density－matrix renormalization group in the age of matrix product states．
Annals of Physics，326（1）：96－192， 2011.
January 2011 Special Issue．
图 Szilárd Szalay，Max Pfeffer，Valentin Murg，Gergely Barcza，Frank Verstraete，Reinhold Schneider，and Örs Legeza．
Tensor product methods and entanglement optimization for ab initio quantum chemistry
International Journal of Quantum Chemistry，115（19）：1342－1391， 2015.
目 Sebastian Wouters and Dimitri Van Neck．
The density matrix renormalization group for ab initio quantum chemistry－
The European Physical Journal D，68（9）：1－20， 2014

Thank you very much for your attention! Thanks to the IGDK1754 for funding.

