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N-electron Schrodinger equation (PDE in 3V dim)
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Curse of dimension
small proteins (IV = 5000), R — 10-grid points ~» 101900 gridpts

Need high accuracy:
Chemmical/biological behaviour ~ energy differences < total energies E
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|U(z1,51,...,%N,sn)|? prob. density of electron positions € R* and spins € Z
Zo

z—R
Tl

encodes chemistry (atom type)

M&

external potential v(z) = —
[e3

Curse of dimension
small proteins (IV = 5000), R — 10-grid points ~» 101900 gridpts

Need high accuracy:
Chemmical/biological behaviour ~ energy differences < total energies E

Dream (theory): Find solution manifold which breaks curse of dim
Dream (numerics): efficient algorithm for controlled approximations
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Binding energy of Ns

Example (Friesecke, SIAM Talk Slides 2021)

Curse of dimension:
N = 14 electrons ~» Schrodinger equation PDE in R*?
10 grid-points in each direction ~» 10*? gridpoints
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Binding energy of Ns

Example (Friesecke, STAM Talk Slides 2021)

Curse of dimension:
N = 14 electrons ~» Schrodinger equation PDE in R*?
10 grid-points in each direction ~» 10*? gridpoints

Need high accuracy:
basic chemistry (binding) begins in 4th digit of lowest eigenvalue

-109.282174 a.u. ground state energy (experiment)
-109.282160 a.u. state of the art simulation (QC-DMRG)
-108.923634 a.u. | energy of two non-bounded nitrogen atoms

Values [WVN14] (similar results [CKGO04])
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Classical methods: FCI and MCSCF

1. Single-particle space (standard finite Galerkin — choosing orbitals):
L2(]R3 X L) =~ span{gol .. .goL}

2. N-particle space (associated tensor product — FCl space):
Li((]Rg' X ZQ)N) ~ span{‘cpil .. .(piN> |1 < <...<in < L} = VN,L dim = (I\)
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Figure 1: Schematic picture of FCI space
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Classical methods: FCI and MCSCF

1. Single-particle space (standard finite Galerkin — choosing orbitals):
LQ(R3 X L) = span{wl .. <pL}

2. N-particle space (associated tensor product — FCl space):
Li((R3 X ZQ)N) ~ span{|<pi1 ...cpz-N> |1 <1 <...<in < L} =:Vn,r dim= (f)

FCI: Fix orbitals (Hartree-Fock), minimize Rayleigh quotient over expansion coefficients
Upcr = argmm{ (&, H‘I’ |\Il € Vn L}

MCSCF: Minimize Rayleigh quotient over both orbitals and expansion coefficients
(v H\I/
Ynrsscr = afgmlﬂ{ |‘I’ € Vn,L(¢i), vi € H'(R?), (i, ;) = 055}

Do not break curse of dimension. Unfeasible for computations beyond small number of

electrons
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Low-rank approxi

3. Low-rank approximation (CP-format — separation of variable):

L@ W )
U Y e ay” - ay)), a;”) € span{p1,...,o0} dim=M.-N.L
v=1
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Low-rank approximation

3. Low-rank approximation (CP-format — separation of variable):

L w W )
U Y e ay” - ay), a;”) € span{p1,..., o1} dim=M.N.L

v=1
Positive results

e asypmotically exact with small M for atomic ions with large nuclear charge
[FG10]

e small error for Lu = f with smooth f in high dimension [DDGS16]
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3. Low-rank approximation (CP-format — separation of variable):

SIRORORNN® ()
Uy e ay” - ay), a;” € span{p1,..., oL} dim=M-N-L
v=1

Did not work well in practice
o Need a ton of terms Kato [Kat57]
Eigenstates of Schrédinger equ. nonsmooth ¥ ~ |z; — x| (z; — x;)
@ Too hard to compute Hillar, Lim [HL13]
“Most tensor problems are NP-hard”
@ Approximation manifold not closed for N > 3 DeSilva, Lim [DSL08]

“Tensor rank and ill-posedness of the best low-rank approximation problem”
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QC-DMRG — Definitions

1. Occupation representation (Fock space point of view)

lpapspeps) +— Poriooiot; ¢ + + ¢ ¢ + ¢ +

Y1 P2
1
_ s _ oL _ L
U= > (G dim =28 = 3 (y)
PN S

N=0
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QC-DMRG — Definitions

1. Occupation representation (Fock space point of view)

lp20306¢5) <— Pot100101, ¢ + + ¢ ¢ + ¢ +
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2. Matrix product states/ tensor-trains
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Figure 1: p; physical variables (occupation); o virtual variables (contracted
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QC-DMRG — Properties

e Minimize Rayleigh quotient over QC-DMRG ansatz
standard algorithm: DMRG (origin:spin chains), hence name of method

e Truncate each A; via SVD to a reasonable size M (M = 2000 — 5000)

Theory: ansatz exact for M > ,_max rank Cp

o Parameter M interpolates between HF and FCI
HF: M =1, FCl: M = 2%/2

o Format approximates solutions to el. Schrodinger eq. well for moderate M
depends on choice of underlying tensor network

e Approximation manifold closed
if network has no loops

good reviews: Schollwoeck [Sch1l] MPS, Szalay et al. [SPM*15] QC-DMRG
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Choosing the network

Within the tensor-train format and for fixed orbitals, the fundamental issue of
choosing the network boils down to choosing the ordering.

Q—O—H—Q—O—O@.

Figure 2: Schematic picture of a MPS before and after reordering the orbitals
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Orderings matter

Fermionic Bell states: example with L = 2N [GF21]

P1teN41 P2+PN42 PNt+Pon : H : N
7 NV R requires bond-dimension 2
New ordering ©1, pN+1, 92, PN+2,... ~> bond-dimension 2

Current method Fiedler ordering [BLMR11]
concepts from QIT and spectral graph theory
Find permutation that maximizes quantum mutual information

New method BWPO [DF21]
Relies on inversion symmetry for singular values of Slater determinants

tailored to Quantum Chemistry
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How can we gain with optimal orderings?

Maximally entangled state:
Up= > iinl®is - @iy)
11 <...<tn
coefficients A;,,....ipy are mutually different elements of P = {,/p; : p; prime}
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How can we gain with optimal orderings?

Maximally entangled state:
Up = > Aiinlei - Pin)
11 <...<tN
coefficients A;,,....ip, are mutually different elements of P = {,/p; : p; prime}

Theorem (Max. entangled MPS [GF21])

States of the type Up require in every step the maximal bond-dim of
min{2’, 277} regardless of the chosen ordering.
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How can we gain with optimal orderings?

Maximally entangled state:
Up = Z >\i17~--7iN|<)0i1 ""piN>
11 <...<tn
coefficients A;,,....ipy are mutually different elements of P = {,/p; : p; prime}
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Figure 3: Singular values of Cj,. "*/2, N =8, L = 16;

HL/2+41--HL>

left sum of 2 Slaters wights 0.9 and 0.1 (mean solid, ribbon 0.75 quantile) [DF21];

right max. entangled state Up [GF21]
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Unitary transformations instead of orderings

Arbitrary fermionic mode transformations: [FG21]
single-particle reduced density matrix vy : Hr — Hr defined by

(U, a'(pi)a(e;)¥) = (pj, yups) forall i, j.
Expand W in eigenbasis of vy (natural orbitals) [CY00]:

In two-particle case (N = 2), this gives nice structure
~ find explicit matrices such that max. bond-dim < 3

lower bound guarantees bond-dim. 3 necessary
(analyze structure of general unfoldings)
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Complete characterization in the Two-particle case

Theorem (Characterization -particle case [FG21])

Suppose L > 4 even, ¥ € Vo 1., and yv has mazimal rank = L.

Then, for any basis {p1,...., oL} and any MPS-representation with bond dimensions
(r1,...,7L-1) we have

@ r; >2 for every j €{1,...,L — 1}

@ At least one of two consecutive elements (rj,rj+1) for j € {2,...,L —2} is at
least 3.

(11, ..y rr—1) with lowest £ -norm is (2,2,3,...,2,3,2,2)
————

L—4 times

Corollary

| A

For two-electron systems, QC-DMRG with optimal fermionic mode
transformation is exact for bond-dim M = 3.
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Complete characterization in the Two-particle case

Theorem (Characterization -particle case [FG21])

Suppose L > 4 even, ¥ € Vo 1., and yv has mazimal rank = L.
Then, for any basis {p1,...., oL} and any MPS-representation with bond dimensions
(r1,...,7L-1) we have

@ r; >2 for every j €{1,...,L — 1}

@ At least one of two consecutive elements (rj,rj+1) for j € {2,...,L —2} is at
least 3.

(11, ..y rr—1) with lowest £ -norm is (2,2,3,...,2,3,2,2)
————

L—4 times

Corollary

| A

For two-electron systems, QC-DMRG with optimal fermionic mode
transformation is exact for bond-dim M = 3.

The results also hold for the full two-electron Hilbert space Li((R3 X ZQ)Q), in
which case an MPS of bond-dim M is a half-infinite chain of M x M matrices.
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Summary & open problems

@ tensor network methods are fast becoming one state-of-art method
(system sizes up to 50 electrons)
theory still lacking ~» optimizing network promising direction

@ Questions concerning orderings

o How rare are states like Wp? Results about average states?
o Are there states with SVs independent of re-ordering?
o Improved result about certain class of states (GS of nice Hamiltonian)?

e Unitary transformations useful in practice? (more expansive!)
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https://github.com/msdupuy/Tensor-Train-Julia
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