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Topics to be covered

1. Tensor product factorization (mathematically exact, loop free):
• Matrix Product State (MPS)
• Tree Tensor Network States
• T3NS Tensor Network States

2. Orbital entropy and Two-site mutual information

3. Basis optimization: fermionic mode transformation

4. Capturing static and dynamic correlations: DMRG-TCCSD

5. Mathematical properties of TNS-TCCSD

6. Error analysis on the N2 molecule
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DMRG provides state-of-the-art results in many fields

H =
∑
ijαβ

Tαβ
ij c†iαcjβ +

1

2

∑
ijklαβγδ

V αβγδ
ijkl c†iαc†jβckγclδ ,

I Tij kinetic and on-site terms, Vijkl two-particle scatterings
I We consider usually lattice models in real space (DMRG)
I In quantum chemistry sites are electron orbitals (QC-DMRG)
I In UHF QC spin-dependent inetractions (UHF-QCDMRG)
I In relativistic quantum chemistry sites are spinors (4c-DMRG)
I In nuclear problems sites are proton/neutron orbitals (JDMRG)
I In k-space representation sites are momentum eigenstates (k-DMRG)
I For particles in confined potential sites → Hermite polynoms
I Major aim: to obtain the desired eigenstates of H.

• Symmetries: Abelian and non-Abelian quantum numbers, double
groups etc

• # of block states: 1 000 – 50 000. Size of Hilbert space up to 108.

• In ab inito DMRG the CAS size is: 50 electrons on 50 orbitals.

• 1-BRDM and 2-BRDM can be extracted.



Tensor product approximation

State vector of a quantum system in the discrete tensor product spaces

|Ψγ〉 =
n1∑

α1=1

. . .

nd∑
αd=1

U(α1, . . . , αd , γ) |α1〉 ⊗ · · · ⊗ |αd〉 ∈
d⊗

i=1

Λi :=
d⊗

i=1

Cni ,

where span{|αi 〉 : αi = 1 , . . . , ni} = Λi = Cni and γ = 1, . . . ,m.

α1 α2 α3 α4 α5 α6 α7 α8 γ

U

In a spin-1/2 model αi ∈ {↓, ↑}.

In a spin-1/2 fermionic model αi ∈ {0, ↓, ↑, ↑↓}.

dimHd = O(nd) Curse of dimensionality!



Tucker representation or approximation

One is looking good or even optimal bases

{|ξimi
〉 : mi = 1, . . . , ri} ' {αi 7→ ξi (mi , αi ) : mi = 1, . . . , ri}

of size ri ≤ ni , in each coordinate direction αi , i = 1, . . . , d , give the
representation (or approximation)

|Ψy 〉 =
r1∑

m1=1

· · ·
rd∑

md=1

C (m1, . . . ,md , y)|ξ1
m1
〉⊗· · ·⊗ |ξdmd

〉 , y = 1, . . . ,m .

or in terms of coefficients

U(α1, . . . , αd , y) =
r1∑

m1=1

· · ·
rd∑

md=1

C (m1, . . . ,md , y)ξ1(α1,m1) . . . ξd(αd ,md)

big reduction from O(mnd) to O(rnd + mrd), but still scales
exponentially with d .



Hierarchical tensor (HT) approximation

We pursue not performing this idea in one step, but proceed in a
hierarchical way
For the approximation of U, we may need in V1 ⊗ V2 only a subspace
V{1,2} ⊂ V1 ⊗V2 with dimension r1 < n1n2, this is defined through a new
basis given in the Tucker representation as

|ξ{1,2}m{1,2}
〉 =

n1∑
m1=1

n2∑
m2=1

U{1,2}(m{1,2}, α1, α2) |α1〉 ⊗ |α2〉 .



Various possibilities to build partition trees: e.g. NRG

Numerical Renormalization group method, (Wilson, 1975)

For a concrete problem, one has to choose an appropriate tree. This
choice has a tremendous influence onto the efficiency of the hierarchical
tensor representation.

The optimal ranks of the tensors, ri � nd , are determined by the
Schmidt-decomposition→ strong connection to quantum information
theory



Tensor product representation
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A general tensor network representation of a tensor of order 5.
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An arbitrary example of a tensor tree (loop free).



Matrix product state (MPS) representation

The tensor U is given element-wise as

U(α1, . . . , αd) =
r1∑

m1=1

. . .

rd−1∑
md−1=1

A1(α1,m1)A2(m1, α2,m2) · · ·Ad(md−1, αd).

(1)
We get d component tensors of order 2 or 3.

α1

m1

A1

α2

m2

A2

α3

m3

A3

α4

m4

A4

α5

A5

A tensor of order 5 in Matrix Product State (MPS) representation.
Also know as Tensor Train (TT).
This yields a chain of matrix products:

U(α1, . . . , αd) = A1(α1)A2(α2) · · ·Ad−1(αd−1)Ad(αd) (2)

with [Ai (αi )]mi−1,mi := Ai (mi−1, αi ,mi ) ∈ Cri−1×ri .

Redundancy:
U(α1, . . . , αd) = A1(α1)GG−1A2(α2) · · ·Ad−1(αd−1)Ad(αd)

Affleck, Kennedy, Lieb &Tagasaki (87); Fannes, Nachtergale & Werner (91),
Römmer & Ostlund (94), Vidal (03); Verstraete(04); Oseledets & Tyrtyshnikov, 2009



Density matrix renormalization group wavefunction White (1992)

|ΨTG〉 =
∑

αlαl+1αl+2αr

ψαlαl+1αl+2αr |φ(l)
αl
〉 ⊗ |φ(sl )

αl+1
〉 ⊗ |φ(sr )

αl+2
〉 ⊗ |φ(r)

αr
〉

where ψαlαl+1αl+2αr coefficients (4-index tensor) are determined by an
iterative diagonalization of the superblock Hamiltonian.
DMRG algorithm provides the optimized set of Ai matrices through a
series of unitary transformation based on the singular value
decomposition (SVD) theorem by sweeping through the network.



Extension of MPS to higher dimensional cases: PEPS

I For 2D systems MPS representation is not optimal

I Short range interactions become also long range

I Entanglement in all 4 direction → tensor product states needed!

I Use tensors Ai [α]m1,m2,m3,m4

I Projected Entangled-Pair State (PEPS)



Various tensor methods exist:

1D MPS
Matrix-product state

White, Östlund, Rommer

1D MERA
Multi-scale entanglement

renormalization ansatz
1D TTNS
Tree tensor net-

work state Vi-

dal, Corboz

2D PEPS

Verstraete, Cirac Jordan,

Orus, Vidal

2D Mera

Vidal, Evenbly

2D Tree-
TNS

Vidal,

Corboz,

Verstraete,

Murg, Legeza,

Noack



A little tensor algebra:

I Building blocks of the networks: tensors with n open legs

I In the networks connected lines correspond to contraction: sum over
related indicies:

I
∑

ij Mijvj = ui

I
∑

ij uiMijvj = c

I
∑

ijk AuikMijCvjk = Tuv

I Order of contraction is important



Higher dimensional networks (Ex.: Tree-TNS)
Corboz, Vidal (2009), Murg, Verstraete, Ö.L, Noack (2010, 2014), Nakatani, Chan (2013)
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Schematic plot of a higher dimensional network, for example, the tree
tensor network state (TTNS). Each node is represented by a tensor Ai of
order zi + 1, with zi is a site dependent coordination number.

The network supposed to reflect the entanglement structure of the
system as much as possible.

Maximal distance between two sites, 2∆, scales logarithmically with d for
z > 2.



Decomposition of the Hamiltonian as TTNO

(a) expectation value 〈Ψ|H|Ψ〉 with respect to the TTNS
(b) The Hamiltonian H, represented as TTNO of component tensors hi

in the middle.
(b1) decomposition of the Hamiltonian as MPO
(b2) decomposition of the Hamiltonian as TTNO



Variable tensor orders and convergence properties

(a) Network-1
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Figure : (Color online) The ground state energy for LiF CAS(6,18) with D = 4
at r = 3.05 for three different network topologies using orbital dependent
coordination numbers.



T3NS a new tensor format Gunst, Verstraete, Wooters, Ö.L., van Neck (2018)
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Example: [Cu2O2]2+



Resource requirements and complexity

I k : number of orbitals

I D: bond dimension

I The underlined terms correspond with the complexity of the most
intensive part of the algorithm, i.e. the matrix-vector product used
in the iterative solver.



One- (ρi) and two-orbital (ρi ,j) reduced density matrix

|ψ〉 =
∑

α1,...,αN

Cα1,...,αN
|α1...αN〉 ,

I ρi,j is calculated by taking the trace of |Ψ〉〈Ψ| over all local bases
except for αi and αj , the bases of sites i and j , i.e.,

ρi,j([αi , αj ], [α
′
i , α
′
j ]) =

∑
α1,...,�αi ,...,

�αj ,...,αN

Cα1,...,αi ,...,αj ,...,αN
C∗α1,...,α′i ,...,α

′
j ,...,,αN

.

I In the MPS representation, calculation of ρij corresponds to the
contraction of the network except at sites i and j .

I This can be decomposed as a sum of projector operators based on
the free variables αi and αj .

I ρi and ρi,j can be constructed from operators describing transitions
between single-site basis states.



Mutual information: classical and quantum correlations
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Sp describes the entanglement of site p with the rest of the system.
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p q
%p,q ⇒ Sp,q

Sp,q describes the entanglement of orbital p and q with the rest of the system.
I p,q describes the mutual information between orbital p and q

I p,q = Sp + Sq − Sp,q

Ö.L., Sólyom, PRB (2003): Quantum Chemistry,

Ö.L., Sólyom, PRL (2005): quantum phase transitions (QPT) with q = p + 1.

Rissler, White, Noack, ECP (2005): Quantum chemistry, arbitrary p and q.



Network optimization by the mutual information

LiF 3.5A
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Redefinition of the fermionic modes by a linear transformation

• Linear transformations of a set of fermionic annihilation operators {ci}
to a new set {di} satisfying the canonical anti-commutation relations:

ci =
Np∑
j=1

Ui,jdj , p denotes the number of different fermion species

• Under this change of basis a state vector |ψ(U)〉 = G (U)|ψ(1)〉
A[1] A[2] A[3] . . . A[n]

g(U) · · ·

· · ·

• Denoting the Hamiltonian written in terms of the transformed modes
by H(U) = G (U)†HG (U), we are interested in the solutions of

(Uopt, |ψopt〉) = argmin U∈U(Np),
|ψ〉∈MDmax

〈ψ|H(U)|ψ〉.

• The global basis change is composed of local unitaries solutions of

U loc
opt = argminU∈V fj

(
|ψ(1j ⊕ U ⊕ 1N−j−2)〉

)
,

cost function f
(1)
j (|ψ〉) = ||Σj

ψ||1 where Σj
ψ denotes the Schmidt

spectrum of |ψ〉 for a bipartiting cut between sites j and j + 1.



Local mode transformation: black-box tool to improve basis
Krumnow, Veis, Ö. L., Eisert, 2014-2016



Large-scale DMRG results (Ex.: Be6 ring)
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Left panel: bond dimension needed for a bounded truncation error
εtrc ≤ 10−6 and Dmin = 64 when starting in the HF basis.
Right panel: the relative error in energy (〈ψ|H|ψ〉 − E0)/E0 obtained by
calculations with Dmax = 256.
E0 was obtained from a calculation with Dmax = 2048 in the localized
basis.



Coupled cluster method with single and double excitations

tailored by matrix product state wave functions
L. Veis, A. Antalik, F. Neese, Ö.L., J. Pittner (2016)

I Efficient treatment of static and dynamic correlations based on
TCCSD method of Bartlett [Kinoshita, Hino, and Bartlett, JCP 123,
074106(2005)]



Tailored coupled clusters

I Formally single reference theory, Fermi vacuum is a single
determinant

I Split-amplitude ansatz

|ΨTCC〉 = eT |Ψref〉 = eT
ext+T CAS

|Ψref〉

I T CAS

I amplitudes extracted from
DMRG (CASCI) calculation

I frozen during CC calculation

I account for static correlation

I T ext

I determined through the usual
CC

I account for dynamic
correlation

|ΨTCCSD〉 = e

(
T ext

1 +T ext
2

)
e

(
T CAS

1 +T CAS
2

)
|Ψref〉

≈ e

(
T ext

1 +T ext
2

)
|ΨCASCI〉

I Requires only small modifications of the CC code



CCSD tailored by MPS wave functions

1. Small active space DMRG calculation

2. Acquisition of CI coefficients by efficient contraction of MPS w.f.
(in two-site form)

|ΨMPS〉 =
∑
{α}

Aα1 Aα2 · · ·Wαiαi+1 · · ·Aαn |α1α2 · · ·αn〉,

3. Calculation of CAS amplitudes

TCAS
1 = C1 TCAS

2 = C2 − 1

2
(C1)2

4. CCSD calculation for T ext
1 and T ext

2

I Cost of the MPS → T12 conversion: O(M2n4) with a small
prefactor, using techniques from Zgid and Nooijen, JCP 128,
144115 (2008)



Chromium dimer – correlation energies

I Single-point calculation at 1.5 Å

I One-particle basis: RHF with Ahlrichs’ SV basis set → (48e,42o)

I DMRG space selected based on S (1) profile

I DMRG performed with DBSS (εtr ≈ 10−7)

I Extrapolated DMRG by Olivares-Amaya et al. JCP 142, 034102,
2015 serves as a FCI benchmark



Nitrogen dimer

I Triple bond breaking resulting in six times degenerate HOMO

I CCSD yields unphysical barrier in PES



Mathematical analysis of the Tailored Coupled Cluster (TCC)

TCC approach was introduced as an alternative to the expensive and
”knotty” multi-reference CC methods (MRCC). The TCC method divides
the cluster operator into a complete active space (CAS) part, Ŝ , and
an external space (ext) part T̂ , i.e.,

|ΨTCC〉 = exp(T̂ ) exp(Ŝ)|ΨHF〉 .
Hence T̂ and Ŝ commute, unlike in MRCC. The ”linked” CC equations
are now given by{

E = 〈ΨHF|e−Ŝe−T̂ ĤeT̂ e Ŝ |ΨHF〉

0 = 〈Ψµ|e−Ŝe−T̂ ĤeT̂ e Ŝ |ΨHF〉 for all Ψµ ∈ CAS⊥.
(1)

I |ΨCAS〉 = e Ŝ |ΨHF〉 is computed first and held fixed for the
dynamical correction step by means of CCSD (CC with only
single-double excitations) applied in CAS⊥.

I Although CC is nonvariational, it is size-extensive =⇒ inherited
by TCC.

I Important: in TCC, the CAS cluster amplitudes are independent
from the external space amplitudes, i.e. the TCC approach does not
take coupling from the external space to the CAS into account!



The choice of the CAS using Quantum Information Theory

I Notations: N the number of electrons, K the number of
spin-orbitals, k the ”basis splitting number” (N ≤ k ≤ K ) and
B = {χ1, . . . , χk︸ ︷︷ ︸

BCAS

, χk+1, . . . , χK︸ ︷︷ ︸
Bext

} the FCI basis.

I Special cases: k = N =⇒ CC (bad for static), and k = K =⇒
DMRG (bad for dynamic).
Is there an optimal choice of k and error minimum in between?

I We choose the CAS space based the on the classification of the
spin-orbital correlations dictated by the mutual information (a.k.a.
two-particle correlation)

I (i , j) = S(ρ{i}) + S(ρ{j})− S(ρ{i,j}),

where S(ρ) = −Tr ρ ln ρ is the von Neumann entropy and ρ{X} is
the reduced density matrix. Basis-dependent!

I More precisely: a pair (χi , χj) of spin-orbitals with...
I large I (i , j) are classified as strongly correlated,
I small I (i , j) are classified as dynamically correlated.

I This mutual information profile is obtained from a quick, low tensor
rank DMRG calculation performed on the full system as a
preliminary step.



Local analysis of the DMRG-TCC method

I The formulation (1) may be viewed as a nonlinear Galerkin
scheme, i.e. it fits into a very wide class of numerical methods,
which has a general mathematical framework.

I We have was shown that under certain assumptions the DMRG-TCC
method admits a locally unique and quasioptimal solution.

I Local uniqueness: the nonlinear equations (1) admit a unique
approximate solution near the exact solution
for a fixed CAS solution.

I Quasioptimality: the ”Galerkin solution” has the minimal error from
the exact solution for a fixed basis set up to a multiplicative constant
– a common feature of Galerkin-type methods.

I Instead of the conventional HOMO-LUMO gap, our key
assumption is that there is a positive CAS-ext gap in the

eigenvalues of the Fock operator, i.e. that λk+1 > λk .



Error bounds: DMRG-TCC has a quadratic error bound

• The energy error ∆E of the DMRG-TCC method is measured from
exact Full CI energy E , i.e. H|Ψ∗〉 = E |Ψ∗〉.
• The error bound is given as ∆E ≤ ∆ε+ ∆εCAS + ∆ε∗CAS where

I ∆ε measures the truncation error introduced by restricting the
CC method to single-, and double excitations in the CCSD step,
”tailored” by the DMRG solution on the CAS.

I ∆εCAS measures the error of approximating the FCI solution
with DMRG on CAS, while the external part of the solution is held
fixed; this in turn can be bounded by

∆εDMRG ≤ ∆EDMRG+‖tCC−t∗CC‖2
ext+‖(ŜDMRG−ŜFCI)φ0‖2+

∑
|µ|=1

εµ(t∗CC)2
µ,

where tCC and t∗CC are the approximate-, and exact cluster

amplitudes, ŜDMRG and ŜFCI are the cluster operators and

εµ = ε
A,...,An

I1,...,In
=
∑n

j=1(λAj − λIj ), with λj denoting the eigenvalues of
the Fock operator. Here, ∆EDMRG can be made arbitrarily small.
The last term is a ”methodological error” inherent in the TCC
method, which is small in applications.

I ∆ε∗CAS measures the error between the full exact solution and
solution obtained by FCI on CAS and untruncated CC.



Numerical error analysis on the N2 (N = 14 e, K = 28 orb)

DMRG for the full orbital space, CAS is formed from k = K = 28 orbitals
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I r=2.118 a0, 2.700 a0, 3.600 a0

I Si shifts upward

I Iij exponential tail not effected

I static and dynamic correlations

I extrapolation with δεTr
I EFCI = CCSDTQPH

I CAS-vector



N/2 ≤ k ≤ K dependence at equlibrium geometry
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N/2 ≤ k ≤ K dependence at equlibrium geometry
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I CAS formed according to
CAS-vector

I DMRG-TCCSD energy is
far below the CCSD energy
for all CAS, even for k = 9

I irregular error behavior,
small values for various k-s
(methodological error)

I supports k-dependent constant in the mathematical analysis

I determine optimal k value from the computational point of view

I effect of truncation error and CAS choice (CAS↑)



N/2 ≤ k ≤ K dependence for stretched geometries
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I Multi-reference character of the wave function is more pronounced
I This becomes apparent through the entropy profiles
I For r = 3.600 a0 the CC computation fluctuates with increasing

excitation ranks and CCSDT is even far below the FCI reference
energy, revealing the variational breakdown of the single-reference
CC method for multi-reference problems.

I DMRG-TCCSD is stable along the whole PES!



Entropy Error Analysis
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Amplitude Error Analysis

e(k, δεTr
) =

∑
µ:
µ=1

(
tCCSD(k , δεTr

)
)2

µ

+
∑
µ:

µ=1,2

[(
t∗k − tCCSD(k , δεTr

)
)2

µ
+
(
s∗k − sDMRG(k , δεTr

)
)2

µ

]
.

Here the valid index-pairs are µ = (i, a), with
i = (i1, . . . , in) ∈ 1, . . . ,N/2n, and a = (a1, . . . , an) ∈ N/2 + 1, . . . ,K n.
The excitation rank is given by µ = n where n = 1 stands for singles,
n = 2 for doubles, and so on.
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Conclusion

I T3NS is a very challenging new tensor format.

I TNS-TCCSD is very efficient method to recover both static and
dynamic correlations.

I DMRG-TCCSD is size-extensive, admits a locally unique and
quasioptimal solution.

I DMRG-TCCSD has a quadratic error bound

I As demonstrated on the N2 molecule DMRG-TCCSD is stable along
the whole PES! → black-box implementation possible.

I Other extensions of TCC with LPNO, etc , excited states, ...

I Need further mathematical analysis

Future: Migration of DMRG/TNS into the NWCHEM professional
software package based on its massively parallelized tensor library (Pacific
North National Laboratory) Supports: Lendület grant, Hungarian Academy

of Sciences, the Hungarian National Research, Development and Innovation

Office (K120569), Hungarian Quantum Technology National Excellence

Program (Project No. 2017-1.2.1-NKP-2017-00001), European Research

Area(ERA), DFG, EU (SIQS, RAQUEL, AQUS),the BMBF, and the

Studienstiftung des Deutschen Volkes, Grant Agency of the Czech Republic


