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Grid-based tensor methods for the Hartree-Fock equation and TEI calculus

The Hartree-Fock (HF) nonlinear 3D integral-differential spectral problem (EVP)

1 .
Foi(x) = (_EA + Ve + Vy — K)pi(x) = Xipi(x), i=1,..., Nop.

The Fock operator F depends on 7(x,y) = 2Z&ibgo,-(x)cp;(y),

Mo
1 Z, 7(y,y) 1 7(x,y)
Fo:=[-=A— ——l—/ —dygo——/ —2== p(y)dy.
22 T e el 7 2 e ey PV

Challenges: High accuracy, 3D convolutions, nuclear cusps, nonlinear EVP, post HF.

@ Grid-based tensor methods for HF equation.
[Khoromskij, Khoromskaia, Schneider, Flad, Andrae, '08-'14],

@ Rank approximation of the two-electron integrals (TEI)
[Khoromskaia, Khoromskij, Schneider, "13]

@ Post Hartree-Fock: excitation energies via rank-structured approx. to BSE system
[Benner, Khoromskaia, Khoromskij, Dolgov, Yang. '15-'18],

@ L x L x L lattice sums of electrostatic potentials, 1/||x||, x € R3, in O(L) .
[Khoromskaia, Khoromskij, '14 -’16],

@ Range-separated (RS) tensor format for long range interaction potentials.
[Benner, Khoromskaia, Khoromskij, '16]
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The Hartree-Fock equation, Galerkin scheme in GTO basis

[Szabo, Ostlund '96)], [Helgaker, Jgrgensen and Olsen, 2000],

Np
Using GTO basis set, pi(x) = > c,igu(x), we obtain the Galerkin system for coefficients
pn=1
matrix C = {c,;} € RNoXNorb - and density matrix D = 2CC* € RNoxNp,
F(D)C = SCE, & = diag(e1,....en,,), C'SC=ly,,

where F(D) = Hp + J(D) + K(D) and S is the mass matrix.

Precomputed: core Hamiltonian Hy = {h,. }, 1 < p, v < N,

1
hl“/ = 5/ Vg‘u, ‘ VgudX+/ VC(X)g/»bngX)
R3 R3

and the two-electron integrals (TEIl) tensor B = [b,, ],

Bvr = /3 /3 8u(x)gv(x)gr(y)ex(y) dxdy, v A =1, ... Ny,
R R

Ix =yl
The nonlinear EVP is solved by DIIS iteration [Pulay '80] and updating
Ny 1 Np
J(D),u,y = Z b}LV,K)\DI'ﬁ)\a K(D) - _5 Z bpk,unDnA-
K,A=1 K,A=1

Standard HF packages : all 3D integrals are analytically precomputed.
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Tensor-structured approach for 3D functions and operators

[Khoromskij & Khoromskaia '07-'12 |
[Khoromskaia & Andrae & Khoromskij, CPC '12],

D m
g g
i K

-b XX Xpis1 +b

Box: [—b, b]3, b~ 15 ,(Z\ , n x nx n 3D Cartesian grids, n3 ~ 101°
the continuous basis functions gi.(x) : lo : gu — &, = >_ gu(xi)Gi(x).
icZ

1 2 3 nXnxn n
gu(X)%GMZgL)@)gL)@g,(L), G, € R g, € R

Core Hamiltonian (Laplace and nuclear potential operators):

A
HO - A3 + V, Where aul/ — <A3GN,G1/>, V/J,y - <GH“ @ GU’Z PN,3>7

a=1

A3 = A(ll) ® [(2) ® [(3) + [(1) ® Agz) ® /(3) + [(1) ® /(2) ® Ag?’).

Py = 25:1 pgl) ® pg,z) ® pg‘?’) € R27X2nX2n ig the tensor representation of the Newton kernel

developed in [Bertoglio, Khoromskij '08—"10
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Example: 3D convolution integrals in 1D complexity (HF and KS eqn.)

[Khoromskij, Khoromskaia '08 (SISC 2009)]

Juv = / g, ()& () Vi (x)dx, prv=1,...N, x€R3
R3

Norb Nb
Vil = Jys g dy o) =23 (@)% i) = X cingu() i =1,
1= Hn=

N, orb-:

Nory Np Ny

p~0=333 G oe?) o E? 0e?) o e o).

i=1 p=1v=1

C2T +T2C to reduce the rank, © — ©' := Z ugl) ® u§2) ® u(3).
Newton kernel Tl ” = Py = Z p(l) gz) ® pg3).

Ry Ry

VHzVH:e’*PN:ZZCmbk( *pgl)) (()*p£,2)) (ug)*pga)

t=1 g=1

Result : J,, = (G, © Gy, V) p,v=1,...Np.
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Tensor-product convolution vs. 3D FFT

[Khoromskij& Khoromskaia, 2008 (SISC 2009)]

Tensor product convolution (1D FFT) (O(nlog n) instead of O(n3log n) for 3D FFT.

| n° [ 5123 [ 1024° | 2048° | 4096° | 8192° | 16384° |

FFT3 5.4 | ~51.6 - - — | ~ 7 days
CxC 1.5 8.8 20.0 61.0 | 157.5 290.2
c2T 5.6 6.9 10.9 20.0 37.9 86.0

Table shows CPU time (in sec) for the computation of Vy for HyO.
(3D FFT time for n > 1024 is obtained by extrapolation).

Tensor approximation of the Newton kernel is based on the Laplace transform and
sinc-quadrature approximation.

Theory: [Stenger '93], [Gavrilyuk, Hackbusch, Khoromskij '08],

Practice: Canonical tensor for the Newton kernel: [Bertoglio, Khoromskij '08]

Z p(l) ® pgz) ® pg3) c RHXFIXH

with the canonical rank, Ry ~ 30 + 40.
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3D Grid-based two-electron integrals (TEI)

[Khoromskaia & Khoromskij & Schneider, SISC’'13]

bp,l/li')\ = / / g,u,(X)gy(X)gK,(y)g)\(y) dXd_y — <G,u, @ GV,PN * (G/{ @ G)\)> &3 -
R3 JR3 lIx =yl !

o GO — [G(ﬂ) ® G“)] eR™M  0=1,2,3; n~ 105, N2 ~ 10%.
1<, <Ny

o GO~ UOVOT YO c xR () c RNGXRe R, ~ N,
@ Then for TEI B = [b,, x2], its matrix

Rar
B:=mat(B) ~ B. :=» ©}_4 VO p) vOT ¢ RNXN

is computed as vectors of its Cholesky factors (columns B(:,j) and diagonal elements
B(i,i)) , where the convolution matrix M(g) u® (P(e) xp UD)) € RReXRe,
Here P(Y) ¢ R"<RN are the factor matrices in rank-Ras canonical tensor Py € R7XM%1 x5 105
1

111

representing the Newton kernel,
Then TEI is represented by Cholesky decomposition (e-approx. )

Br~LLT, LcRMVsXRe Rg~ N,
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Tensor-based Hartree-Fock solver

Tensor-based Electronic Structure Calculations (TESC) package
[Khoromskaia & Khoromskij, 2008-2014] J

Hartree-Fock solver: all parts of the Fock operator are computed by tensor-structured numerical
methods (using 3D Cartesian grids but all operations in 1D complexity

F(C)C = SCE, F=Hy+ J(C)— K(C),

> Coulomb matrix: given D = vec(D), vec(J) = BD ~ L(LT D).
Nory Rp

> HF exchange: K(D)uw = — Z Z (Ooa Lk Cxi) (22 Crilkwk),
i=1 k=
T -282.8646
----- residual
—AE
0.9
100 - -282.8648
©
L -282.865
5]
L
10 @-282.8652
2
W 2828654
-282.8656
10-10
10 20 30 40 50 60 40 45 50 55
SCF iteration iteration

Glycine: last k + 27 iterations; grid for TEl: n3 = 1310723.
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Calculation of excitation energies for molecules

The Bethe-Salpeter equation provides calculation of the excitation energies of
molecular structures.

=> optical properties of molecules, nano-structures and solids: in
photoluminescence, light-emitting devices, laser technology, and photovoltaics.

=> the BSE model was developed during several decades (Many-Body
Perturbation Theory, Green Function Approximation for fermions in Quantum
Electrodynamics, etc.) : [Dyson 1949], [Feynmann 1949], [Salpeter, Bethe 1951], [Hedin
1965], [Louie, Rohlfing 1998], [Runge, Gross 1984], [Casida 1995], [Onida, Reining, Rubio
2002]....

The Bethe-Salpeter equation is an eigenvalue problem (EVP) w.r.t. Hamiltonian
of size N? x N?, where N = N, is the number of atomic orbital basis functions,

Hiyp = E.

Alternative: Full Configuration Interaction, Coupled Clusters, etc. (extremely
computationally consuming).
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Calculation of excitation energies for molecules

The Bethe-Salpeter equation (BSE)

Hip = E.
The main problem: O(N®°) scaling of EVP.

Our approach with computational (and storage) cost O(N?) - O(N3):

@ Self-consistent ab-initio calculation of the ground state energy:
= one-electron orbitals and energies (in our case Hartree-Fock equation).

@ Construction of BSE system matrix in molecular orbitals basis using the
output of HF solver and low-rank approximation to involved quantities.

© Fast iterative solution of BSE, obtaining the lowest (in magnitude) part of
spectrum.

[Benner & Khoromskaia & Khoromskij, Mol.Phys.’16]

We use the formulation of the BSE model in the framework of noninteracting
Green's function in the MO basis as in [Ribolini, Toulouse, Savin 2013].
( the part of it corresponding to one-particle Green's function).
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Prerequisites from Hartree-Fock calculations

The prerequisites for generating matrices in the BSE EVP are ab-initio Hartree-Fock calculations:
[Khoromskaia CMAM '14]
© Full set of ground state energies (eigenvalues of the Hartree-Fock EVP)
€1, -, ENp-
@ The full set of Galerkin coefficients in the expansion of molecular orbitals in Gaussian basis,
C = {cui} € RNoXNs,
© TEI matrix B = [b, 2] € RVEXN; is precomputed as a low-rank Cholesky factorization,

B~ LLT, LecRYo*Re, Rg= O(Np)

presented in molecular orbitals basis, [Khoromskaia & Khoromskij, CPC '14]

Np
B — Vmo = [Viajp], where vj,jp = Z CiCraCriCobbynicn
VK, A=1
v
Here indices i, j € Z, correspond to occupied orbitals, Z, := {1,..., Ny}, and a,b € Z, to

virtual Z, := {Nyp, ..., Np}. Denote Ny, = Np — Ny, and Noy = Ngp N,y .
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Construction of BSE matrix

[Benner & Khoromskaia & Khoromskij, MolPhys '16]
The construction of BSE matrix includes computation of several auxiliary quantities.

@ The diagonal "energy” matrix
Ae = [Aeia,jb] € RNOVXNO", where Aaia,jb = (Ea — 5i)5ij53b-

€a and g; correspond to virt. and occ. one-electron energies.

Energy matrix can be represented in the Kronecker product form
Ae = |, @diag{es:a € Z,} —diag{e; : i € o} ® I,

where I, and |, are the identity matrices on respective index sets.

Matrix Aeg is invertible if the homo lumo gap of the system is positive,
€a—€;>0>0, a€cl,i€l,,
@ Using Ae and V = [v;, jp] the dielectric function Z = [zpq,rs] € RNov*Nov is defined by

Zpqg,rs = Oprdgs — Vpg,rs[Xo(w = 0)]rs,rs,

where x(w) is the matrix of the so-called Lehmann representation to the response function

W =- (25 a2).
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Construction of BSE matrix (cont.)

Let 1 € R¥ and d. = diag{Ae '} € R¥ be the all-ones and diagonal vectors
of As_l, respectively, specifying the rank-1 matrix 1 - dET.
In this notations the matrix Z = [zp4,,s] takes a compact form

Z=l®lL+Vo((l-dl).

@ The static screened interaction matrix (tensor) defined by
: -1
W = [Wpqrs] : Wpg,rs := Z Zpq,tuVtu,rs- (1)
tEIV7u€IO

Eq. (1) is considered on conventional index set {p,r € Z,} U{q,s € Z, }.
For example, we have the following matrix factorization of W := [wj, js],

W =2Z"1'V provided that a,beZ,, i,j€TZ,.

Here we follow the BSE scheme for H, from [Ribolini & Toulouse& Savin 2013],

accomplished by factorized TEI (usually not available in standard packages),
= thus their HF-BSE scheme becomes valid for larger molecular systems.
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The Bethe-Salpeter eigenvalue problem for rank-structured matrices

EVP for 2N,, x 2N,,-BSE matrix to determine the excitation energies w,

A= (e ) )= (o) @

where the matrix blocks are defined in the index notation by

diajb = DEjajb + Viajb — Wij.ab,
biajb := Viapj — Wibaj, a,b€Z,, 1,j€ L.

» In the matrix form
A=De+V-W, B=V_-W.

For the matrix elements in W = [Wiajb]: Wiajb = Wij,ab-
W is defined by permutation of W: W = [Wi, jb] = [Wib,4j]-
» The diagonal + low-rank sparsity in Ae 4+ V' and W can be recognized.
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Simplified rank-structured problem and reduced basis approach

[Benner & Khoromskaia & Khoromskij, Molec. Phys. '16]
Reduced basis approach: A and B are replaced by

A Ay = De + LyL], — Wy, and B By:=LyL], —W,, (3)
with rank(Wr) < r, and solve simplified problem.

Ry Nov Ny Ry Nov Ry

———= =B [I===——-0

The simplified structured problem reads

o (3:) - (—Aé)s‘ —B%(\Ja‘) <3:> = (3:) ~ (4)

Compute mg eigenpairs of (4), {(un,vn)T} =: Gm,, solve the reduced mg x mg problem
My = G F1Gmy, S1= G, Gm, € RTOXM0,

My = vnS1y, y € R™.
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Motivation for the reduced-block approximation to W

[Benner & Dolgov & Khoromskaia & Khoromskij, JCP’17]

1
0.5

0

-0.5

e -1
K 30 12%0%0 30
3000, o 20 %0910 20
1000 10 %00 10

mo = 32 BSE eigenvectors Gm, := {(un,vn)T} for H3p chain and NaHs4 molecule (right).

» Numerical observation: the eigenvectors (x,y,)” corresponding to small eigs.
are well localized!

(Up to a certain threshold ~ 1073 — 107% )
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Surprising result I: Two-sided bounds for excitation energies (red. bl. W)

CZHSOH, eps=0.1 Hsz’ eps=0.1
t11t5+r =0 T e—
1y 4t
< 10.5 35| ,',
i \?‘L II
> 3 4
@ 107y & 3l A ——reduced evp
e 5 A - e -initial evp
® 95t —o—reduced evp /] —=—low-rank evp
- e -initial evp 25 —y
9l —e—low-rankevp | |  F----77777
2 2 =
2 4 6 8 1 1.5 2 2.5 3 3.5 4
eigenvalues eigenvalues

Errors (in eV) for simplified and reduced BSE eigenvalues for Ethanol (Co;H5OH)
molecule and H3>-chain.

Lower bound is hard to prove: open question!

» Physical interpretation: open question!
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Two-sided bounds for excitation energies (reduced block W)

[Benner & Dolgov & Khoromskaia & Khoromskij, JCP '17]
CZHSOH, eps=0.05

02H5NO2 , eps=0.1

0.1 0.15

‘ : ‘
—reduced evp —reduced evp
—simplified evp —simplified evp

01 |
0.05 |
0.05
A A I} A
v\Iw\l\!\/ -005 [ \W’U‘IL\/\/\J |
-0.05 | |
0.1 | ]

-0.1

eV
o

eV
o

‘ ‘ ‘ -0.15 ‘ ‘ ‘
0 50 100 150 200 0 50 100 150 200

Mo Mo

Errors (in €V) in mg smallest eigenvalues for simplified and reduced schemes: ethanol C2H5OH
(left), Glycine amino acid CoHsNO; (right).

Molecule HQO N2H4 C2H5OH H32 C2H5N02 H48 C3H7N02
TDA size | 1807 6577 14307 17927 30007 40327 44887

7 —w1] [ 002 ] 003 | 008 | 007 | 005 | 010 | 01 |

Errors (in eV) for reduced-block approximation to BSE eigenvalues ( ¢ = 0.1).
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Iterative solution of BSE using explicit Sherman-Morrison-Woodbury inverse

[Benner & Dolgov & Khoromskaia & Khoromskij, JCP '17]
» Compute eigenvalues with smallest magnitudes taking advantage from the rank-structured
approximation of the matrix inverse AO_1 and Fo_l. Define

Ay =A0De+ PQT, P=I[Ly Lw], Q=][Ly

By =owT, o=[Ly Y], V=][Ly
» First consider the Tamm-Duncoff approximation (TDA),

_LW] )

—Z} 5 r = R\/.

AOX” = MnXn, Xn € RNOV AO c RNOVxNOV

Inverting a (block) diagonal plus low rank matrix: use the S-M-W formula for AO_1
—1
Agt=BeTl - AP (14 QTAsTIP) QAT

» The inner 2r X 2r matrix K = (I + QTAs_lP)_l is small and can be computed explicitly at

O(r3 + r?Noy) operations.

» Matrix-vector product Ao_lx,, for the diagonal Ae~! and low-rank matrix in the second
summand at the overall cost O(Noyr).
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Linear scaling method: diagonal 4+ low rank 4+ reduced block structure

Times (s) for eig-solvers using reduced block representation of TDA and BSE systems.

| Molecular syst. | HQO | N2H4 | C2H5OH | H32 | C2H5N02 | H48 | C3H7N02 |

TDA size 180° | 657° 1430° | 17927 3000° | 40327 | 4488°
EIG(Ao) 0.02 | 05 4.3 9.8 37.6 91 127.4

TDA: EIGS(Ag) | 0.09 | 0.33 2.8 0.77 16.1 3.0 30

TDA: EIGS(A, ") | 0.07 | 0.09 0.25 0.77 0.54 3.0 1.0
BSE size 360° | 13147 28607 35842 60002 8064° 8976°
EIG(Fo) 0.08 | 4.2 33.7 68.1 274 649 903

BSE: EIGS(F, ") | 0.21 | 0.37 1.11 1.10 2.4 2.92 4.6

Note: accuracy is better by the order of magnitude compared with “diag + low-rank” structure.

CPU time scales linearly in the system size O(N,,) !
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Hidden tensor structure: BSE in high-dim. quantized tensor space (QTT)

[Benner & Dolgov & Khoromskaia & Khoromskij, JCP '17]

Fast QT T-structured BSE solvers based on low-rank + reduced block + diagonal
format.

Proof of concept: estimating QTT ranks: ro77 S N,

Molecular SYS. HQO H16 N2H4 C2H5OH H32 C2H5 N02 C3H7 N02
N, 5 3 9 13 16 20 24
rerT of Ly 5.4 7 9.1 12.7 14 17.5 21
rorT of eig-vect. | 5.3 | 7.6 9.1 12.7 13.6 17.2 20.9
No, 180 | 448 | 657 1430 1792 3000 4488

QTT ranks of column vectors in Ly, for my = 30 "minimal” TDA-eigenvectors.

Hoq, N, = 12 Ny 72 96 144 168
size BSE 1440° | 20167 | 3168° | 37447
QTT ranks 9.5 11.6 11.8 12.7

Average QTT ranks of column vectors in Ly, factor vs. N, for Hydrogen chains:
weak dependence on the number of basis functions Np: rorr < N,.
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Surprising result 11: Lower bound on the algebraic complexity of BSE, O(N?)

Usual relation: N,/N, > Cero =~ 10, i.e. Ny, ~ CoroN?

= quasi-optimal complexity of QTT solver

Hypothesis: Estimate on the lower bound on the asymptotic algebraic complexity
of the large scale BSE eigenvalue problem

Wase = O(log(Nov)rgrr) = O(log(No) 7).

determines the irreducible lower bound on the asymptotic algebraic complexity of
the large scale BSE eigenvalue problem.

Molecular syst. CoHs0OH Hso CoHgs NO, Hag C3H7 NO,
TDA size 1430 17922 30002 4032° 4488°

time QTT eig 0.14 0.23 0.32 0.28 0.63

abs. error (eV) 0.08 0.19 0.17 0.14 0.00034

Times (s) and abs. error (eV) for QTT-DMRG eigensolvers for TDA.
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BSE density of states (DOS) via low-rank + QTT interpolation

DOS for symmetric matrices [L. Lin, Y. Saad, C. Yang, SIAM Review '16]
1 n
p(t)==>"8(t—X), tA€0,a; Au=u, A=AT.
n
j=1

A Lorentzian broadening of the Tamm-Dancoff (TDA) absorption spectrum (DOS).
» Blurring (regularization) by Lorentzians:

5(t) - Ly(t) = =T l|.m( ! )

Tt2+n2 7« t—in

Reduction to the trace calculation

o(t) — Py(t) == % Z Ly(t— X)) = %Trace[((tl — A2 +7n2n71.
j=1

1 . 1 1
P(t) = on(t) == Elmz =) —in = —Im Trace[(t| — A— inl)™].
j=1

nm

Gaussian blurring:

2 n
5(6) = () = —m—exp [~y ) = $(1) ~ fy(t) = = g (t— \y).
\/gn 27] nj:1

Venera Khoromskaia (Dased ONn jOInt WOt Tensor-based optical spectrum

Basic techniques and numerical proof of concept

[P. Benner & Khoromskaia & B.Khoromskij & C. Yang, arXiv'18]
» The proposed approach relies on the following techniques:

23 / 32

(a) using the low-rank BSE matrix structure which allows for each fixed t € [0, a] the direct

matrix inversion and computation of the respective traces, A — Ag, F — Fg.

(b) the low-rank QTT tensor interpolation of the function ¢, (t) sampled on large uniform grid

{t1,...,tm} in the whole spectral interval t € [0, a].
80 ‘
——TDA
—exact TDA ——simp. TDA
60 | —simpl. TDA | | 1.5 ¢ A 1
w| P e
n

0 0 : : : ‘

0 10 20 30 40 5 10 15 20 25

eV eV

DoS for HyO: exact TDA vs simplified TDA (left), the zoom in optical interval of spectrum.
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DOS for rank-structured matrices: Algorithm in complex arithmetics

[P. Benner & Khoromskaia & B.Khoromskij & C. Yang, arXiv’'18]

A=E+PQ", with P,QeR™F  Ey=blockdiag{Bo, Do}. (5)

R is a small rank parameter, block size is small.
Let S(t) denote the diagonal shift of A depending on the parameter t,

S(t)y=tl— E— PQT — inl =: E(t) — PQ". (6)
The block-diagonal part Ep is modified by the diagonal shift,
E(t) = —Eo + tl — inl = blockdiag{B(t), D(t)}
corresponding to the complex case
B(t) = tlg — inlg — By, D(t) = tlp — inlp — Dy. (7)
How to compute the trace of the structured matrix resolvent in O(n) op.

trace[S(t) ).
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DOS for rank-structured matrices: Algorithm in complex arithmetics

The cost of trace calculations is estimated to be O(nR?).

Theorem

Let the matrix family S(t), t € [0, a], be given by (6), with
E(t) = blockdiag{B(t), D(t)},

where B(t), D(t) are defined in (7). Then the trace of the matrix inverse S(t)~' can be
calculated explicitly by

trace[S(t) '] = trace[B(t) '] + trace[D(t) '] — 1, (U(t) ® V(t))1k,
where U(t) = E(t)"'PK(t)"* € R™F, V(t) = E(t)'Q € R™F, and
K(t) =Ir+ QTE(t)"'(t)P

is a small R x R matrix. For fixed t € [0, a], assume that ng = O(n*) with o <1/3,
then the numerical cost is estimated by O(nR?).
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DOS by traces of rank-structured matrices

[P. Benner & Khoromskaia & B.Khoromskij & C. Yang, arXiv'18]
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Left: DOS for HoO (top) and Ethanol (bottom), using full set of TDA eigenvalues (blue) and
DOS by rank-structed approximations (red). Right: zoom in the optical part of spectrum.
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DOS-Algorithm in real arithmetics: linear scaling in n

[P. Benner & Khoromskaia & B.Khoromskij & C. Yang, arXiv’'18]

rescaled time (s),

1000

2000
matrix size n

3000

4000

Real arithmetics: CPU time (left) and the rescaled time T/R? vs. n.
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Molecule HQO NH3 H202 N2H4 C2H5OH C2H5 N02 C3H7 NOz
Noy 180 | 215 531 657 1430 3000 4488
ranks 36 30 68 54 74 129 147
Time (s) 4 5 23 34 151 812 1782
Scaled time | 0.1 | 0.16 | 0.33 0.62 2.1 4.8 12.1

Rank and time characteristics of Alg. in real arithmetics.
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QTT interpolation to DOS: log-scaling in the grid-size N

[P. Benner & Khoromskaia & B.Khoromskij & C. Yang, arXiv'18]

DOS via Lorentzians DOS via Lorentzians

5 —exact DoS TDA | 1 —exact DoS TDA
—QTT approx. —QTT approx.

200 400 600 800 1000 5 10 15 20 25 30
eV eV

DOS for H,O via Lorentzians (blue), its QTT approximation (red) (left). Zoom on the left most
part of the spectrum (right). £€=0.04, rorr = 10.5.
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DOS H>O0 via Lorentzians: number of funct. calls for QT T-cross interp. vs. grid size N.
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QTT interpolation to DOS: log-scaling in the grid-size N

» The ACA QTT tensor interpolation reduces the number of functional calls, i.e.,
M < N, if the QTT rank parameters (or threshold € > 0) are chosen to satisfy

M = Ciriylog, N < N.

(An estimate on the number of function evaluations).

R A M M W (u it w/“ |

QTT ACA interpolation of the DOS for H,O: zoom into a small spectral interval.

QTT interpolation procedure: by TT-Toolbox (Oseledets et al.)
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Upper bound on the QTT ranks of DOS

[P. Benner & Khoromskaia & B.Khoromskij & C. Yang, arXiv'18]

Theorem

Assume that the effective support of the shifted Gaussians g,(t — X\;), j =1,...,n, is included in
[—a, a]. Then the QTT e-rank of the vector p,, is bounded by

rankgTT(Py) < Ca Iog3/2(| log £|),

C = O(|logn|) > 0 depends only logarithmically on the regularization parameter ).

Molecule HQO NH3 H202 N2H4 C2H5OH C2H5 N02 C3H7 N02
n= N, 180 215 531 657 1430 3000 4488
QTT ranks 11 11 12 11 15 16 13

QTT ranks of Lorentzians-DOS for some molecules; ¢ = 0.04, n = 0.4, N = 16384.
» The QTT tensor rank remains almost independent of the molecular size! The weak

dependence of the rank parameter on the molecular geometry.
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Summary: Rank-structured DOS calculations for optical spectra of molecules

Tensor-structured approach presents:

@ Ab-initio grid-based tensor-structured HF solver.

@ The two-electron integrals tensor (TEI) by Cholesky factorization.
@ Excitation energies via BSE eig-problem with linear cost in n.
o

Log-scaling BSE solver by QTT tensor approximation depending only on the
number of molecular orbitals, as O(N2). .

@ DOS for optical spectra of molecules (TDA): linear cost in n per interpolation point
(not n*!).

@ Toward log-scaling in n by QTT-ACA interpolation.

http://personal-homepages.mis.mpg.de/vekh
http://personal-homepages.mis.mpg.de/bokh

Venera Khoromskaia, Boris N. Khoromskij.
Tensor Numerical Methods in Quantum Chemistry
De Gruyter, Berlin, 2018.

Thank you for attention !
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