Fast Calculation of the Excitation Energies for Compact Molecules by using Tensor-structured Methods

Venera Khoromskaia

(based on joint works with Boris Khoromskij, Peter Benner, Sergey Dolgov and Chao Yang)

Annual meeting of the GAMM Activity Group MOANSI

Zuse Institute Berlin, 25-26.10, 2018

Max-Planck-Institute for Mathematics in the Sciences, Leipzig

Max-Planck-Institute for DCTS, Magdeburg

Venera Khoromskaia (based on joint wor

Tensor-based optical spectrum

1 / 32

Grid-based tensor methods for the Hartree-Fock equation and TEI calculus

The Hartree-Fock (HF) nonlinear 3D integral-differential spectral problem (EVP)

$$\mathcal{F}\varphi_i(x) \equiv (-rac{1}{2}\Delta + V_c + V_H - \mathcal{K})\varphi_i(x) = \lambda_i\,\varphi_i(x), \quad i=1,...,N_{orb}.$$

The Fock operator \mathcal{F} depends on $\tau(x,y) = 2\sum_{i=1}^{N_{orb}} \varphi_i(x)\varphi_i(y)$,

$$\mathcal{F}\varphi:=[-\frac{1}{2}\Delta-\sum_{\nu=1}^{M_0}\frac{Z_\nu}{\|x-a_\nu\|}+\int_{\mathbb{R}^3}\frac{\tau(y,y)}{\|x-y\|}\,dy]\varphi-\frac{1}{2}\int_{\mathbb{R}^3}\,\frac{\tau(x,y)}{\|x-y\|}\,\varphi(y)dy.$$

Challenges: High accuracy, 3D convolutions, nuclear cusps, nonlinear EVP, post HF.

- Grid-based tensor methods for HF equation.
 [Khoromskij, Khoromskaia, Schneider, Flad, Andrae, '08-'14],
- Rank approximation of the two-electron integrals (TEI)
 [Khoromskaia, Khoromskij, Schneider, '13]
- Post Hartree-Fock: excitation energies via rank-structured approx. to BSE system [Benner, Khoromskaia, Khoromskij, Dolgov, Yang. '15-'18],
- $L \times L \times L$ lattice sums of electrostatic potentials, 1/||x||, $x \in R^3$, in O(L). [Khoromskaia, Khoromskij, '14 -'16],
- Range-separated (RS) tensor format for long range interaction potentials.
 [Benner, Khoromskaia, Khoromskij, '16]

The Hartree-Fock equation, Galerkin scheme in GTO basis

[Szabo, Ostlund '96)], [Helgaker, Jørgensen and Olsen, 2000],

Using GTO basis set, $\varphi_i(x) = \sum\limits_{\mu=1}^{N_b} c_{\mu i} g_{\mu}(x)$, we obtain the Galerkin system for coefficients matrix $C = \{c_{\mu i}\} \in \mathbb{R}^{N_b \times N_{orb}}$, and density matrix $D = 2CC^* \in \mathbb{R}^{N_b \times N_b}$,

$$F(D)C = SC\mathcal{E}, \quad \mathcal{E} = diag(\varepsilon_1, ..., \varepsilon_{N_{orb}}), \quad C^TSC = I_{N_b},$$

where $F(D) = H_0 + J(D) + K(D)$ and S is the mass matrix.

Precomputed: core Hamiltonian $H_0 = \{h_{\mu\nu}\}$, $1 \le \mu, \nu \le N_b$,

$$h_{\mu
u} = rac{1}{2} \int_{\mathbb{R}^3}
abla g_\mu \cdot
abla g_
u dx + \int_{\mathbb{R}^3} V_c(x) g_\mu g_
u dx,$$

and the two-electron integrals (TEI) tensor ${f B}=[b_{\mu
u\kappa\lambda}]$,

$$b_{\mu\nu\kappa\lambda} = \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{g_{\mu}(x)g_{\nu}(x)g_{\kappa}(y)g_{\lambda}(y)}{\|x-y\|} dx dy, \quad \mu, \nu, \kappa, \lambda = 1, ..., N_b.$$

The nonlinear EVP is solved by DIIS iteration [Pulay '80] and updating

$$J(D)_{\mu
u} = \sum_{\kappa,\lambda=1}^{N_b} b_{\mu
u,\kappa\lambda} D_{\kappa\lambda}, \quad K(D) = -rac{1}{2} \sum_{\kappa,\lambda=1}^{N_b} b_{\mu\lambda,
u\kappa} D_{\kappa\lambda}.$$

Standard HF packages: all 3D integrals are analytically precomputed.

Venera Khoromskaia (based on joint wor

Tensor-based optical spectrum

3 / 32

Tensor-structured approach for 3D functions and operators

[Khoromskij & Khoromskaia '07-'12] [Khoromskaia & Andrae & Khoromskij, CPC '12],

Box: $[-b,b]^3$, $b\approx 15 \stackrel{\circ}{A}$, $n\times n\times n$ 3D Cartesian grids, $n^3\sim 10^{15}$ the continuous basis functions $g_\mu(x)$: $\mathbf{I}_0:g_\mu\to\overline{g}_\mu:=\sum_{\mathbf{i}\in\mathcal{I}}g_\mu(x_\mathbf{i})\zeta_\mathbf{i}(x)$.

$$g_{\mu}(\mathsf{x}) pprox \mathbf{G}_{\mu} = \mathbf{g}_{\mu}^{(1)} \otimes \mathbf{g}_{\mu}^{(2)} \otimes \mathbf{g}_{\mu}^{(3)}, \quad \mathbf{G}_{\mu} \in \mathbb{R}^{n imes n imes n}, \; \mathbf{g}_{\mu} \in \mathbb{R}^{n}$$

Core Hamiltonian (Laplace and nuclear potential operators):

$$H_0 = A_3 + V, \quad ext{ where } a_{\mu\nu} = \langle \Delta_3 \mathbf{G}_\mu, \mathbf{G}_
u
angle, \quad v_{\mu\nu} = \langle \mathbf{G}_\mu \odot \mathbf{G}_
u, \sum_{a=1}^A \mathbf{P}_{N,a}
angle,$$

$$\Delta_3 = \Delta_1^{(1)} \otimes \textit{I}^{(2)} \otimes \textit{I}^{(3)} + \textit{I}^{(1)} \otimes \Delta_1^{(2)} \otimes \textit{I}^{(3)} + \textit{I}^{(1)} \otimes \textit{I}^{(2)} \otimes \Delta_1^{(3)}.$$

 $\mathbf{P}_N = \sum_{q=1}^R \mathbf{p}_q^{(1)} \otimes \mathbf{p}_q^{(2)} \otimes \mathbf{p}_q^{(3)} \in \mathbb{R}^{2n \times 2n \times 2n}$ is the tensor representation of the Newton kernel developed in [Bertoglio, Khoromskij '08-'10].

Example: 3D convolution integrals in 1D complexity (HF and KS eqn.)

[Khoromskij, Khoromskaia '08 (SISC 2009)]

$$\begin{split} J_{\mu\nu} := \int_{\mathbb{R}^3} g_{\mu}(x) g_{\nu}(x) V_H(x) dx, \quad \mu, \nu = 1, \dots N_b \quad x \in \mathbb{R}^3, \\ V_H(x) := \int_{\mathbb{R}^3} \frac{\rho(y)}{\|x - y\|} \, dy \qquad \rho(x) = 2 \sum_{i=1}^{N_{orb}} (\varphi_i)^2, \quad \varphi_i(x) = \sum_{\mu=1}^{N_b} c_{i\mu} g_{\mu}(x), \quad i = 1, ..., N_{orb}. \end{split}$$

$$ho pprox \Theta = \sum_{i=1}^{N_{orb}} \sum_{\mu=1}^{N_b} \sum_{
u=1}^{N_b} C_{i
u} C_{i\mu} (\mathbf{g}_{\mu}^{(1)} \odot \mathbf{g}_{
u}^{(1)}) \otimes (\mathbf{g}_{\mu}^{(2)} \odot \mathbf{g}_{
u}^{(2)}) \otimes (\mathbf{g}_{\mu}^{(3)} \odot \mathbf{g}_{
u}^{(3)}).$$

C2T +T2C to reduce the rank, $\Theta \to \Theta' := \sum\limits_{t=1}^{R_{\rho}} \mathbf{u}_t^{(1)} \otimes \mathbf{u}_t^{(2)} \otimes \mathbf{u}_t^{(3)}$.

Newton kernel $\frac{1}{\|\mathbf{x}\|} \Rightarrow \mathbf{P}_N = \sum_{q=1}^{R_N} \mathbf{p}_q^{(1)} \otimes \mathbf{p}_q^{(2)} \otimes \mathbf{p}_q^{(3)}$.

$$V_H pprox \mathbf{V}_H = \Theta' * \mathbf{P}_N = \sum_{t=1}^{R_
ho} \sum_{q=1}^{R_N} c_m b_k \left(\mathbf{u}_t^{(1)} * \mathbf{p}_q^{(1)}
ight) \otimes \left(\mathbf{u}_t^{(2)} * \mathbf{p}_q^{(2)}
ight) \otimes \left(\mathbf{u}_t^{(3)} * \mathbf{p}_q^{(3)}
ight),$$

Result : $J_{\mu\nu} \approx \langle \mathbf{G}_{\mu} \odot \mathbf{G}_{\nu}, \mathbf{V}_{H} \rangle \quad \mu, \nu = 1, \dots N_{b}$.

Venera Khoromskaia (based on joint wor

Tensor-based optical spectrum

5 / 32

Tensor-product convolution vs. 3D FFT

[Khoromskij& Khoromskaia, 2008 (SISC 2009)]

Tensor product convolution (1D FFT) ($O(n \log n)$ instead of $O(n^3 \log n)$ for 3D FFT.

n^3	512 ³	1024 ³	2048 ³	4096 ³	8192 ³	16384 ³
FFT ₃	5.4	~ 51.6	_	_	_	\sim 7 days
C * C	1.5	8.8	20.0	61.0	157.5	299.2
C2T	5.6	6.9	10.9	20.0	37.9	86.0

Table shows CPU time (in sec) for the computation of V_H for H_2O . (3D FFT time for $n \ge 1024$ is obtained by extrapolation).

Tensor approximation of the Newton kernel is based on the Laplace transform and sinc-quadrature approximation.

Theory: [Stenger '93], [Gavrilyuk, Hackbusch, Khoromskij '08],

Practice: Canonical tensor for the Newton kernel: [Bertoglio, Khoromskij '08]

$$\mathbf{P}_N = \sum_{q=1}^{R_N} \mathbf{p}_q^{(1)} \otimes \mathbf{p}_q^{(2)} \otimes \mathbf{p}_q^{(3)} \in \mathbb{R}^{n \times n \times n}$$

with the canonical rank, $R_N \approx 30 \div 40$.

Venera Khoromskaia (based on joint wor

[Khoromskaia & Khoromskij & Schneider, SISC'13]

$$b_{\mu\nu\kappa\lambda} = \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{g_{\mu}(x)g_{\nu}(x)g_{\kappa}(y)g_{\lambda}(y)}{\|x-y\|} dx dy = \langle \mathbf{G}_{\mu} \odot \mathbf{G}_{\nu}, \mathbf{P}_{\mathcal{N}} * (\mathbf{G}_{\kappa} \odot \mathbf{G}_{\lambda}) \rangle_{n\otimes 3}.$$

- $\bullet \ \ G^{(\ell)} = \left[G_{\mu}^{(\ell)} \odot G_{\nu}^{(\ell)} \right]_{1 \leq \mu, \nu \leq N_b} \in \mathbb{R}^{n \times N_b^2} \quad \ell = 1, 2, 3; \ n \approx 10^5, \ N_b^2 \approx 10^4.$
- $G^{(\ell)} \approx U^{(\ell)} V^{(\ell)}^T$, $U^{(\ell)} \in \mathbb{R}^{n \times R_\ell}$, $V^{(\ell)} \in \mathbb{R}^{N_b^2 \times R_\ell}$, $R_\ell \sim N_b$.
- Then for TEI $\mathbf{B} = [b_{\mu\nu,\kappa\lambda}]$, its matrix

$$B := \mathit{mat}(\mathbf{B}) pprox B_{arepsilon} := \sum_{k=1}^{R_{\mathcal{N}}} \odot_{\ell=1}^{3} V^{(\ell)} M_{k}^{(\ell)} V^{(\ell)}^{T} \in \mathbb{R}^{N_{b}^{2} imes N_{b}^{2}}$$

is computed as vectors of its Cholesky factors (columns B(:,j) and diagonal elements B(i,i)), where the convolution matrix $M_k^{(\ell)} = U^{(\ell)}{}^T (P_k^{(\ell)} *_n U^{(\ell)}) \in \mathbb{R}^{R_\ell \times R_\ell}$.

Here $P^{(\ell)} \in \mathbb{R}^{n \times R_{\mathcal{N}}}$ are the factor matrices in rank- $R_{\mathcal{N}}$ canonical tensor $\mathbf{P}_{\mathcal{N}} \in \mathbb{R}^{n \times n \times n}$, $n \approx 10^5$ representing the Newton kernel, $\frac{1}{||\mathbf{x}||}$.

Then TEI is represented by Cholesky decomposition (ε -approx.)

$$B \approx LL^T$$
, $L \in \mathbb{R}^{N_b^2 \times R_B}$ $R_B \sim N_b$

Venera Khoromskaia (based on joint wor

Tensor-based optical spectrum

7 / 32

Tensor-based Hartree-Fock solver

Tensor-based Electronic Structure Calculations (TESC) package [Khoromskaia & Khoromskij, 2008-2014]

Hartree-Fock solver: all parts of the Fock operator are computed by tensor-structured numerical methods (using 3D Cartesian grids but all operations in 1D complexity

$$F(C)C = SC\mathcal{E}, \quad F = H_0 + J(C) - K(C),$$

ightharpoonup Coulomb matrix: given $\overline{D} = vec(D)$, $vec(J) = B\overline{D} \approx L(L^T\overline{D})$.

$$ightharpoonup HF$$
 exchange: $K(D)_{\mu\nu} = -\sum_{i=1}^{N_{orb}} \sum_{k=1}^{R_B} (\sum_{\lambda} L_{\mu\lambda k} C_{\lambda i}) (\sum_{\kappa} C_{\kappa i} L_{\kappa\nu k}),$

Glycine: last k + 27 iterations; grid for TEI: $n^3 = 131072^3$.

Calculation of excitation energies for molecules

The Bethe-Salpeter equation provides calculation of the excitation energies of molecular structures.

- => optical properties of molecules, nano-structures and solids: in photoluminescence, light-emitting devices, laser technology, and photovoltaics.
- => the BSE model was developed during several decades (Many-Body Perturbation Theory, Green Function Approximation for fermions in Quantum Electrodynamics, etc.) : [Dyson 1949], [Feynmann 1949], [Salpeter, Bethe 1951], [Hedin 1965], [Louie, Rohlfing 1998], [Runge, Gross 1984], [Casida 1995], [Onida, Reining, Rubio 2002],...

The Bethe-Salpeter equation is an eigenvalue problem (EVP) w.r.t. Hamiltonian of size $N^2 \times N^2$, where $N = N_b$ is the number of atomic orbital basis functions,

$$\mathcal{H}\psi = E\psi$$
.

<u>Alternative:</u> Full Configuration Interaction, Coupled Clusters, etc. (extremely computationally consuming).

Venera Khoromskaia (based on joint wor

Tensor-based optical spectrum

9 / 32

Calculation of excitation energies for molecules

The Bethe-Salpeter equation (BSE)

$$\mathcal{H}\psi = \mathcal{E}\psi$$
.

The main problem: $O(N^6)$ scaling of EVP.

Our approach with computational (and storage) cost $O(N^2) \div O(N^3)$:

- Self-consistent ab-initio calculation of the ground state energy:
 ⇒ one-electron orbitals and energies (in our case Hartree-Fock equation).
- Construction of BSE system matrix in molecular orbitals basis using the output of HF solver and low-rank approximation to involved quantities.
- Section Fast iterative solution of BSE, obtaining the lowest (in magnitude) part of spectrum.

[Benner & Khoromskaia & Khoromskij, Mol.Phys.'16]

We use the formulation of the BSE model in the framework of noninteracting Green's function in the MO basis as in [Ribolini, Toulouse, Savin 2013]. (the part of it corresponding to one-particle Green's function).

Prerequisites from Hartree-Fock calculations

The prerequisites for generating matrices in the BSE EVP are ab-initio Hartree-Fock calculations: [Khoromskaia CMAM '14]

Full set of ground state energies (eigenvalues of the Hartree-Fock EVP)

$$\varepsilon_1, ..., \varepsilon_{N_b}$$
.

2 The full set of Galerkin coefficients in the expansion of molecular orbitals in Gaussian basis,

$$C = \{c_{\mu i}\} \in \mathbb{R}^{N_b \times N_b}$$
.

3 TEI matrix $B=[b_{\mu
u,\kappa\lambda}]\in\mathbb{R}^{N_b^2 imes N_b^2}$ is precomputed as a low-rank Cholesky factorization,

$$B \approx LL^T$$
, $L \in \mathbb{R}^{N_b^2 \times R_B}$, $R_B = O(N_b)$

presented in molecular orbitals basis, [Khoromskaia & Khoromskij, CPC '14]

$$B\mapsto \mathbf{V}_{MO}=[v_{iajb}], ext{ where } v_{iajb}=\sum_{\mu,\nu,\kappa,\lambda=1}^{N_b} C_{\mu i}C_{\nu a}C_{\kappa j}C_{\lambda b}b_{\mu \nu,\kappa \lambda}.$$

Here indices $i, j \in \mathcal{I}_o$ correspond to occupied orbitals, $\mathcal{I}_o := \{1, \dots, N_{orb}\}$, and $a, b \in \mathcal{I}_v$ to virtual $\mathcal{I}_v := \{N_{orb}, \dots, N_b\}$. Denote $N_v = N_b - N_{orb}$, and $N_{ov} = N_{orb}N_v$.

Venera Khoromskaia (based on joint wor

Tensor-based optical spectrum

11 / 32

Construction of BSE matrix

[Benner & Khoromskaia & Khoromskij, MolPhys '16]

The construction of BSE matrix includes computation of several auxiliary quantities.

• The diagonal "energy" matrix

$$\Delta \varepsilon = [\Delta \varepsilon_{ia,jb}] \in \mathbb{R}^{N_{ov} \times N_{ov}}, \text{ where } \Delta \varepsilon_{ia,jb} = (\varepsilon_a - \varepsilon_i) \delta_{ij} \delta_{ab}.$$

 ε_a and ε_i correspond to virt. and occ. one-electron energies.

Energy matrix can be represented in the Kronecker product form

$$\Delta \varepsilon = \mathit{I}_o \otimes \mathsf{diag}\{\varepsilon_{\mathit{a}} : \mathit{a} \in \mathcal{I}_{\mathit{v}}\} - \mathsf{diag}\{\varepsilon_{\mathit{i}} : \mathit{i} \in \mathcal{I}_o\} \otimes \mathit{I}_{\mathit{v}},$$

where I_o and I_v are the identity matrices on respective index sets.

Matrix $\Delta \varepsilon$ is invertible if the homo lumo gap of the system is positive,

$$\varepsilon_a - \varepsilon_i > \delta > 0, \quad a \in \mathcal{I}_v, i \in \mathcal{I}_o,$$

• Using $\Delta \varepsilon$ and $V = [v_{ia,jb}]$ the dielectric function $Z = [z_{pq,rs}] \in \mathbb{R}^{N_{ov} \times N_{ov}}$ is defined by

$$z_{pq,rs} := \delta_{pr}\delta_{qs} - v_{pq,rs}[\boldsymbol{\chi}_0(\omega=0)]_{rs,rs},$$

where $\chi_0(\omega)$ is the matrix of the so-called Lehmann representation to the *response function*

$$\chi_0(0) = - egin{pmatrix} \Delta \varepsilon^{-1} & \mathbf{0} \\ \mathbf{0} & \Delta \varepsilon^{-1} \end{pmatrix}.$$

Venera Khoromskaia (based on joint wor

Construction of BSE matrix (cont.)

Let $\mathbf{1} \in \mathbb{R}^{N_{ov}}$ and $\mathbf{d}_{\varepsilon} = \operatorname{diag}\{\boldsymbol{\Delta} \boldsymbol{\varepsilon}^{-1}\} \in \mathbb{R}^{N_{ov}}$ be the all-ones and diagonal vectors of $\boldsymbol{\Delta} \boldsymbol{\varepsilon}^{-1}$, respectively, specifying the rank-1 matrix $\mathbf{1} \cdot \mathbf{d}_{\varepsilon}^{T}$. In this notations the matrix $Z = [z_{pq,rs}]$ takes a compact form

$$Z = I_o \otimes I_v + V \odot \left(\mathbf{1} \cdot \mathbf{d}_{\varepsilon}^T\right).$$

The static screened interaction matrix (tensor) defined by

$$W = [w_{pq,rs}] : w_{pq,rs} := \sum_{t \in \mathcal{I}_{v}, u \in \mathcal{I}_{o}} z_{pq,tu}^{-1} v_{tu,rs}.$$
 (1)

Eq. (1) is considered on conventional index set $\{p, r \in \mathcal{I}_o\} \cup \{q, s \in \mathcal{I}_v\}$. For example, we have the following matrix factorization of $W := [w_{ia,jb}]$,

$$W=Z^{-1}V$$
 provided that $a,b\in\mathcal{I}_{v}, i,j\in\mathcal{I}_{o}.$

Here we follow the BSE scheme for H_2 from [Ribolini & Toulouse& Savin 2013], accomplished by factorized TEI (usually not available in standard packages), \Rightarrow thus their HF-BSE scheme becomes valid for larger molecular systems.

Venera Khoromskaia (based on joint wor

Tensor-based optical spectrum

13 / 32

The Bethe-Salpeter eigenvalue problem for rank-structured matrices

EVP for $2N_{ov} \times 2N_{ov}$ -BSE matrix to determine the excitation energies ω_n

$$F_1\begin{pmatrix} \mathbf{x}_n \\ \mathbf{y}_n \end{pmatrix} \equiv \begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} \mathbf{x}_n \\ \mathbf{y}_n \end{pmatrix} = \omega_n \begin{pmatrix} \mathbf{x}_n \\ \mathbf{y}_n \end{pmatrix}, \tag{2}$$

where the matrix blocks are defined in the index notation by

$$a_{ia,jb} := \Delta \varepsilon_{ia,jb} + v_{ia,jb} - w_{ij,ab},$$

 $b_{ia,jb} := v_{ia,bj} - w_{ib,aj}, \quad a, b \in \mathcal{I}_v, \quad i, j \in \mathcal{I}_o.$

In the matrix form

$$A = \Delta \varepsilon + V - \overline{W}, \quad B = V - \widetilde{W}.$$

For the matrix elements in $\overline{W} = [\overline{w}_{ia,jb}]$: $\overline{w}_{ia,jb} = w_{ij,ab}$. \widetilde{W} is defined by permutation of W: $\widetilde{W} = [\widetilde{w}_{ia,jb}] = [w_{ib,aj}]$.

lacktriangle The diagonal + low-rank sparsity in $oldsymbol{\Delta} arepsilon + V$ and W can be recognized.

Simplified rank-structured problem and reduced basis approach

[Benner & Khoromskaia & Khoromskij, Molec. Phys. '16]

Reduced basis approach: A and B are replaced by

$$A \mapsto A_0 := \Delta \varepsilon + L_V L_V^T - \overline{W}_{N_W} \quad \text{and} \quad B \mapsto B_0 := L_V L_V^T - \widetilde{W}_r,$$
 (3)

with $rank(\widetilde{W}_r) \leq r$, and solve simplified problem.

The simplified structured problem reads

$$F_0 \begin{pmatrix} \mathbf{u}_n \\ \mathbf{v}_n \end{pmatrix} \equiv \begin{pmatrix} A_0 & B_0 \\ -B_0^* & -A_0^* \end{pmatrix} \begin{pmatrix} \mathbf{u}_n \\ \mathbf{v}_n \end{pmatrix} = \lambda_n \begin{pmatrix} \mathbf{u}_n \\ \mathbf{v}_n \end{pmatrix}. \tag{4}$$

Compute m_0 eigenpairs of (4), $\{(\mathbf{u}_n, \mathbf{v}_n)^T\} =: G_{m_0}$, solve the reduced $m_0 \times m_0$ problem

$$M_1 = G_{m_0}^T F_1 G_{m_0}, \quad S_1 = G_{m_0}^T G_{m_0} \in \mathbb{R}^{m_0 \times m_0},$$

 $M_1 \mathbf{y} = \gamma_n S_1 \mathbf{y}, \quad \mathbf{y} \in \mathbb{R}^{m_0}.$

Venera Khoromskaia (based on joint wor

Tensor-based optical spectrum

15 / 32

Motivation for the reduced-block approximation to \overline{W}

[Benner & Dolgov & Khoromskaia & Khoromskij, JCP'17]

 $m_0 = 32$ BSE eigenvectors $G_{m_0} := \{(\mathbf{u}_n, \mathbf{v}_n)^T\}$ for H_{32} chain and N_2H_4 molecule (right).

▶ Numerical observation: the eigenvectors $(\mathbf{x}_n, \mathbf{y}_n)^T$ corresponding to small eigs. are well localized!

(Up to a certain threshold $\approx 10^{-3}-10^{-4}$.)

Errors (in eV) for simplified and reduced BSE eigenvalues for Ethanol (C_2H_5OH) molecule and H_{32} -chain.

Lower bound is hard to prove: open question!

▶ Physical interpretation: open question!

Venera Khoromskaia (based on joint wor

Tensor-based optical spectrum

17 / 32

Two-sided bounds for excitation energies (reduced block \overline{W})

[Benner & Dolgov & Khoromskaia & Khoromskij, JCP '17]

Errors (in eV) in m_0 smallest eigenvalues for simplified and reduced schemes: ethanol C_2H_5OH (left), Glycine amino acid $C_2H_5NO_2$ (right).

Molecule	H ₂ O	N_2H_4	C ₂ H ₅ OH	H ₃₂	$C_2H_5NO_2$	H ₄₈	C ₃ H ₇ NO ₂
TDA size	180 ²	657 ²	1430 ²	1792 ²	3000 ²	4032 ²	4488 ²
$ \overline{\gamma}_1 - \omega_1 $	0.02	0.03	0.08	0.07	0.05	0.10	0.1

Errors (in eV) for reduced-block approximation to BSE eigenvalues ($\varepsilon = 0.1$).

Iterative solution of BSE using explicit Sherman-Morrison-Woodbury inverse

[Benner & Dolgov & Khoromskaia & Khoromskij, JCP '17]

Compute eigenvalues with smallest magnitudes taking advantage from the rank-structured approximation of the matrix inverse A_0^{-1} and F_0^{-1} . Define

$$\begin{array}{ll} A_0 &= \boldsymbol{\Delta} \boldsymbol{\varepsilon} + P Q^\top, & P = \begin{bmatrix} L_V & L_W \end{bmatrix}, & Q = \begin{bmatrix} L_V & -L_W \end{bmatrix}, \\ B_0 &= \boldsymbol{\Phi} \boldsymbol{\Psi}^\top, & \boldsymbol{\Phi} = \begin{bmatrix} L_V & Y \end{bmatrix}, & \boldsymbol{\Psi} = \begin{bmatrix} L_V & -Z \end{bmatrix}, & r = R_V. \end{array}$$

▶ First consider the Tamm-Duncoff approximation (TDA),

$$A_0 \mathbf{x}_n = \mu_n \mathbf{x}_n, \quad \mathbf{x}_n \in \mathbb{R}^{N_{ov}} \quad A_0 \in \mathbb{R}^{N_{ov} \times N_{ov}}$$

Inverting a (block) diagonal plus low rank matrix: use the S-M-W formula for A_0^{-1}

$$A_0^{-1} = \mathbf{\Delta} \mathbf{\varepsilon}^{-1} - \mathbf{\Delta} \mathbf{\varepsilon}^{-1} P \left(\mathbf{I} + Q^{\top} \mathbf{\Delta} \mathbf{\varepsilon}^{-1} P \right)^{-1} Q^{\top} \mathbf{\Delta} \mathbf{\varepsilon}^{-1}.$$

- ▶ The inner $2r \times 2r$ matrix $K = (I + Q^{\top} \Delta \varepsilon^{-1} P)^{-1}$ is small and can be computed explicitly at $\mathcal{O}(r^3 + r^2 N_{ov})$ operations.
- ▶ Matrix-vector product $A_0^{-1}\mathbf{x}_n$ for the diagonal $\Delta \varepsilon^{-1}$ and low-rank matrix in the second summand at the overall cost $\mathcal{O}(N_{ov}r)$.

Venera Khoromskaia (based on joint wor

Tensor-based optical spectrum

19 / 32

Linear scaling method: diagonal + low rank + reduced block structure

Times (s) for eig-solvers using reduced block representation of TDA and BSE systems.

Molecular syst.	H ₂ O	N_2H_4	C ₂ H ₅ OH	H ₃₂	$C_2H_5NO_2$	H ₄₈	C ₃ H ₇ NO ₂
TDA size	180 ²	657 ²	1430 ²	1792 ²	3000 ²	4032 ²	4488 ²
$EIG(A_0)$	0.02	0.5	4.3	9.8	37.6	91	127.4
TDA: EIGS(A_0)	0.09	0.33	2.8	0.77	16.1	3.0	30
TDA: EIGS(A_0^{-1})	0.07	0.09	0.25	0.77	0.54	3.0	1.0
BSE size	360 ²	1314 ²	2860 ²	3584 ²	6000 ²	8064 ²	8976 ²
$EIG(F_0)$	0.08	4.2	33.7	68.1	274	649	903
BSE: EIGS(F_0^{-1})	0.21	0.37	1.11	1.10	2.4	2.92	4.6

Note: accuracy is better by the order of magnitude compared with "diag + low-rank" structure.

CPU time scales linearly in the system size $O(N_{ov})$!

Hidden tensor structure: BSE in high-dim. quantized tensor space (QTT)

[Benner & Dolgov & Khoromskaia & Khoromskij, JCP '17]

Fast QTT-structured BSE solvers based on low-rank + reduced block + diagonal format.

Proof of concept: estimating QTT ranks: $r_{QTT} \lesssim N_o$

Molecular sys.	H ₂ O	H ₁₆	N_2H_4	C ₂ H ₅ OH	H ₃₂	C ₂ H ₅ NO ₂	C ₃ H ₇ NO ₂
N _o	5	8	9	13	16	20	24
r_{QTT} of L_V	5.4	7	9.1	12.7	14	17.5	21
r_{QTT} of eig-vect.	5.3	7.6	9.1	12.7	13.6	17.2	20.9
N _{ov}	180	448	657	1430	1792	3000	4488

QTT ranks of column vectors in L_V for $m_0 = 30$ "minimal" TDA-eigenvectors.

$H_{24}, N_o = 12$	N_b	72	96	144	168
	size BSE	1440 ²	2016 ²	3168 ²	3744 ²
	QTT ranks	9.5	11.6	11.8	12.7

Average QTT ranks of column vectors in L_V factor vs. N_o for Hydrogen chains: weak dependence on the number of basis functions N_b : $r_{QTT} \lesssim N_o$.

Venera Khoromskaia (based on joint wor

Tensor-based optical spectrum

21 / 32

Surprising result II: Lower bound on the algebraic complexity of BSE, $\mathcal{O}(N_o^2)$

Usual relation: $N_b/N_o \geq C_{GTO} \approx 10$, i.e. $N_{ov} \approx C_{GTO} N_o^2$

 \Rightarrow quasi-optimal complexity of QTT solver

Hypothesis: Estimate on the lower bound on the asymptotic algebraic complexity of the large scale BSE eigenvalue problem

$$W_{BSE} = \mathcal{O}(\log(N_{ov})r_{QTT}^2) = \mathcal{O}(\log(N_o)N_o^2).$$

determines the irreducible lower bound on the asymptotic algebraic complexity of the large scale BSE eigenvalue problem.

Molecular syst.	C ₂ H ₅ OH	H ₃₂	C ₂ H ₅ NO ₂	H ₄₈	C ₃ H ₇ NO ₂
TDA size	1430 ²	1792 ²	3000 ²	4032 ²	4488 ²
time QTT eig	0.14	0.23	0.32	0.28	0.63
abs. error (eV)	0.08	0.19	0.17	0.14	0.00034

Times (s) and abs. error (eV) for QTT-DMRG eigensolvers for TDA.

DOS for symmetric matrices [L. Lin, Y. Saad, C. Yang, SIAM Review '16]

$$\phi(t) = \frac{1}{n} \sum_{j=1}^{n} \delta(t - \lambda_j), \quad t, \lambda_j \in [0, a]; \quad Au_j = \lambda_j u_j, \ A = A^T.$$

A Lorentzian broadening of the Tamm-Dancoff (TDA) absorption spectrum (DOS).

▶ Blurring (regularization) by Lorentzians:

$$\delta(t) \leadsto \mathsf{L}_{\eta}(t) := rac{1}{\pi} rac{\eta}{t^2 + \eta^2} = rac{1}{\pi} \mathsf{Im} \left(rac{1}{t - i\eta}
ight)$$

Reduction to the trace calculation

$$\phi(t) \mapsto \phi_{\eta}(t) := \frac{1}{n} \sum_{j=1}^{n} L_{\eta}(t - \lambda_{j}) = \frac{1}{n\pi} \text{Trace}[((tI - A)^{2} + \eta^{2}I)^{-1}].$$

$$\phi(t)\mapsto \phi_\eta(t):=\frac{1}{n\pi}\mathrm{Im}\sum_{i=1}^n\frac{1}{(t-\lambda_j)-i\eta}=\frac{1}{n\pi}\mathrm{Im}\,\mathrm{Trace}[(tI-A-i\eta I)^{-1}].$$

Gaussian blurring:

$$\delta(t) \rightsquigarrow g_{\eta}(t) = \frac{1}{\sqrt{2\pi}\eta} \exp\left(-\frac{t^2}{2\eta^2}\right) \ \Rightarrow \ \phi(t) \approx \phi_{\eta}(t) := \frac{1}{n} \sum_{j=1}^n g_{\eta}(t - \lambda_j).$$

Venera Khoromskaia (based on joint wor

Tensor-based optical spectrum

23 / 32

Basic techniques and numerical proof of concept

[P. Benner & Khoromskaia & B.Khoromskij & C. Yang, arXiv'18]

- ▶ The proposed approach relies on the following techniques:
- (a) using the low-rank BSE matrix structure which allows for each fixed $t \in [0, a]$ the direct matrix inversion and computation of the respective traces, $A \mapsto A_0$, $F \mapsto F_0$.
- (b) the low-rank QTT tensor interpolation of the function $\phi_{\eta}(t)$ sampled on large uniform grid $\{t_1, \ldots, t_M\}$ in the whole spectral interval $t \in [0, a]$.

DoS for H₂O: exact TDA vs simplified TDA (left), the zoom in optical interval of spectrum.

Venera Khoromskaia (based on joint wor

DOS for rank-structured matrices: Algorithm in complex arithmetics

[P. Benner & Khoromskaia & B.Khoromskij & C. Yang, arXiv'18]

$$A = E_0 + PQ^T$$
, with $P, Q \in \mathbb{R}^{n \times R}$, $E_0 = \mathsf{blockdiag}\{B_0, D_0\}$. (5)

R is a small rank parameter, block size is small.

Let S(t) denote the diagonal shift of A depending on the parameter t,

$$S(t) = tI - E_0 - PQ^T - i\eta I =: E(t) - PQ^T.$$
 (6)

The block-diagonal part E_0 is modified by the diagonal shift,

$$E(t) = -E_0 + tI - i\eta I \equiv \mathsf{blockdiag}\{B(t), D(t)\}$$

corresponding to the complex case

$$B(t) = tI_B - i\eta I_B - B_0, \quad D(t) = tI_D - i\eta I_D - D_0.$$
 (7)

How to compute the trace of the structured matrix resolvent in O(n) op.

$$\operatorname{trace}[S(t)^{-1}].$$

Venera Khoromskaia (based on joint wor

Tensor-based optical spectrum

25 / 32

DOS for rank-structured matrices: Algorithm in complex arithmetics

The cost of trace calculations is estimated to be $O(nR^2)$.

Theorem

Let the matrix family S(t), $t \in [0, a]$, be given by (6), with

$$E(t) = \text{blockdiag}\{B(t), D(t)\},\$$

where B(t), D(t) are defined in (7). Then the trace of the matrix inverse $S(t)^{-1}$ can be calculated explicitly by

$$\operatorname{trace}[S(t)^{-1}] = \operatorname{trace}[B(t)^{-1}] + \operatorname{trace}[D(t)^{-1}] - \mathbf{1}_n^T(U(t) \odot V(t))\mathbf{1}_R,$$

where
$$U(t)=E(t)^{-1}PK(t)^{-1}\in\mathbb{R}^{n\times R}$$
, $V(t)=E(t)^{-1}Q\in\mathbb{R}^{n\times R}$, and

$$K(t) = I_R + Q^T E(t)^{-1}(t) P$$

is a small $R \times R$ matrix. For fixed $t \in [0, a]$, assume that $n_B = O(n^{\alpha})$ with $\alpha \le 1/3$, then the numerical cost is estimated by $O(nR^2)$.

Venera Khoromskaia (based on joint wor

[P. Benner & Khoromskaia & B.Khoromskij & C. Yang, arXiv'18]

Left: DOS for H_2O (top) and Ethanol (bottom), using full set of TDA eigenvalues (blue) and DOS by rank-structed approximations (red). Right: zoom in the optical part of spectrum.

Venera Khoromskaia (based on joint wor

Tensor-based optical spectrum

27 / 32

DOS-Algorithm in real arithmetics: linear scaling in n

[P. Benner & Khoromskaia & B.Khoromskij & C. Yang, arXiv'18]

Real arithmetics: CPU time (left) and the rescaled time T/R^2 vs. n.

Molecule	H ₂ O	NH ₃	H_2O_2	N ₂ H ₄	C ₂ H ₅ OH	C_2H_5 NO_2	C ₃ H ₇ NO ₂
N _{ov}	180	215	531	657	1430	3000	4488
ranks	36	30	68	54	74	129	147
Time (s)	4	5	23	34	151	812	1782
Scaled time	0.1	0.16	0.33	0.62	2.1	4.8	12.1

Rank and time characteristics of Alg. in real arithmetics.

[P. Benner & Khoromskaia & B.Khoromskij & C. Yang, arXiv'18]

DOS for H₂O via Lorentzians (blue), its QTT approximation (red) (left). Zoom on the left most part of the spectrum (right). ε =0.04, r_{QTT} = 10.5.

DOS H_2O via Lorentzians: number of funct. calls for QTT-cross interp. vs. grid size N.

Venera Khoromskaia (based on joint wor

Tensor-based optical spectrum

29 / 32

QTT interpolation to DOS: log-scaling in the grid-size N

▶ The ACA QTT tensor interpolation reduces the number of functional calls, i.e., M < N, if the QTT rank parameters (or threshold $\varepsilon > 0$) are chosen to satisfy

$$M = C_s r_{att}^2 \log_2 N \leq N$$
.

(An estimate on the number of function evaluations).

QTT ACA interpolation of the DOS for H₂O: zoom into a small spectral interval.

QTT interpolation procedure: by TT-Toolbox (Oseledets et al.)

Upper bound on the QTT ranks of DOS

[P. Benner & Khoromskaia & B.Khoromskij & C. Yang, arXiv'18]

$\mathsf{Theorem}$

Assume that the effective support of the shifted Gaussians $g_{\eta}(t-\lambda_{j})$, $j=1,\ldots,n$, is included in [-a,a]. Then the QTT ε -rank of the vector \mathbf{p}_{η} is bounded by

$$rank_{QTT}(\mathbf{p}_{\eta}) \leq Ca \log^{3/2}(|\log \varepsilon|),$$

 $C = O(|\log \eta|) > 0$ depends only logarithmically on the regularization parameter η .

Molecule	H ₂ O	NH ₃	H_2O_2	N_2H_4	C ₂ H ₅ OH	C ₂ H ₅ NO ₂	C ₃ H ₇ NO ₂
$n = N_{ov}$	180	215	531	657	1430	3000	4488
QTT ranks	11	11	12	11	15	16	13

QTT ranks of Lorentzians-DOS for some molecules; $\varepsilon = 0.04$, $\eta = 0.4$, N = 16384.

▶ The QTT tensor rank remains almost independent of the molecular size! The weak dependence of the rank parameter on the molecular geometry.

Venera Khoromskaia (based on joint wor

Tensor-based optical spectrum

31 / 32

Summary: Rank-structured DOS calculations for optical spectra of molecules

Tensor-structured approach presents:

- Ab-initio grid-based tensor-structured HF solver.
- The two-electron integrals tensor (TEI) by Cholesky factorization.
- Excitation energies via BSE eig-problem with linear cost in *n*.
- Log-scaling BSE solver by QTT tensor approximation depending only on the number of molecular orbitals, as $O(N_o^2)$.
- DOS for optical spectra of molecules (TDA): linear cost in n per interpolation point (not n^3 !).
- Toward log-scaling in *n* by QTT-ACA interpolation.

http://personal-homepages.mis.mpg.de/vekh http://personal-homepages.mis.mpg.de/bokh

Venera Khoromskaia, Boris N. Khoromskij. Tensor Numerical Methods in Quantum Chemistry De Gruyter, Berlin, 2018.

Thank you for attention!