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Motivation

I Photovoltaic devices convert light (photons) into current (electron motion).
I We employ a Kohn–Sham-DFT model with electronic orbitals φi .

Excited state with occupied orbital n + 1:
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I We restrict ourselves to closed-shell electron configurations (no spin).
I Find a material such that the charge transfer from φn to φn+1 is large.
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Variational Principle for the Ground State Orbitals φi

Ground state orbitals satisfy (φ1, . . . , φn) ∈ argmin
{
Eµ[ψ]

∣∣ψ ∈ A} where

Eµ[φ1, . . . , φn] :=

n∑
i=1

∫
R3
|∇φi |2︸ ︷︷ ︸

T [φ]

−
∫
R3

( 1
| · | ∗ µ

)
ρ︸ ︷︷ ︸

Vext [ρ]

+
1
2

∫
R3

( 1
| · | ∗ ρ

)
ρ︸ ︷︷ ︸

JH [ρ]

denotes the Kohn–Sham energy functional (without exchange–correlation) and

A :=
{
φ ∈ H1

0 (Ω)n
∣∣ 〈φi , φj 〉L2(Ω) = δij

}
equals the set of admissible electronic orbitals. The electronic density is given by
ρ := 2

∑n
i=1 |φi |2 and the nuclear density is contained in the set of admissible

nuclear charge distributions supported in Ωnuc ⊂⊂ Ω (Ω ⊂ R3 open, bounded):

µ ∈ Anuc :=
{
ν ∈M(Ωnuc)

∣∣ ν ≥ 0, ν(Ωnuc) = 2n
}
.
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Kohn–Sham Equations

Let (φ1, . . . , φn) ∈ A be a minimizer of the unitary invariant

Eµ[φ1, . . . , φn] :=

n∑
i=1

∫
R3
|∇φi |2︸ ︷︷ ︸

T [φ]

−
∫
R3

( 1
| · | ∗ µ

)
ρ︸ ︷︷ ︸

Vext [ρ]

+
1
2

∫
R3

( 1
| · | ∗ ρ

)
ρ︸ ︷︷ ︸

JH [ρ]

.

We perform a variation of each φi under the orthonormality constraints
〈φi , φj〉L2(Ω) = δij . By a unitary transformation of φ1, . . . , φn, one obtains
εi ∈ R such that φ1, . . . , φn satisfy the Kohn–Sham equations

hφφi :=

(
−

1
2
∆ −

1
| · | ∗ µ︸ ︷︷ ︸
vext

+
1
| · | ∗ ρ︸ ︷︷ ︸
vH

)
φi = εiφi .

The operator hφ is the Kohn–Sham Hamiltonian (without exchange–correlation).
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Schrödinger Equation vs. Kohn–Sham Equations

Consider a system of n electrons in R3.
Schrödinger equation Kohn–Sham equations

Hψ = εψ, ψ : R3n → C, hφφi = εiφi , φi : R3 → C, 1 ≤ i ≤ n

H =

n∑
i=1

−
1
2
∆i +

n∑
i=1

V (~ri )

+
∑
i<j

U(~ri ,~rj )

hφ = −
1
2
∆+ vext(~r)

+ vH(~r) + vxc [ρ(~r)]

Now, discretize R with 100 points.

Schrödinger equation Kohn–Sham equations

H ψ = εψ, hφ φi = εφi , φi ∈ C10
6

ψ ∈ C106n φ := (φi )i ∈ C10
6n

I Kohn–Sham equations are much more efficient for many-body systems.
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HOMO and LUMO

We set ρχ = |χ|2 and introduce the excitation functional

Eµ,φ[χ] :=
〈
χ, hφχ

〉
=

1
2

∫
Ω

|∇χ|2 −
∫
Ω

( 1
| · | ∗ µ

)
ρχ +

∫
Ω

( 1
| · | ∗ ρ

)
ρχ.

A HOMO is then defined by φH ∈ argmax
{
Eµ,φ[χ]

∣∣χ ∈ AH
φ

}
where

AH
φ :=

{
φH ∈ Span{φ1, . . . , φn}

∣∣∣ 〈φH , φH〉 = 1
}
,

and a LUMO is defined by φL ∈ argmin
{
Eµ,φ[χ]

∣∣χ ∈ AL
φ

}
where

AL
φ :=

{
φL ∈ Span{φ1, . . . , φn}⊥

∣∣∣ 〈φL, φL〉 = 1
}
.

Obviously, hφφH = εHφH and hφφL = εLφL with εH , εL ∈ R. Typically, we have
εH = εn and εL = εn+1, where ε1 ≤ ε2 ≤ . . . are the eigenvalues of hφ [FG2018].
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Optimal Control Problem

We start with a desirable physical property of the excitation, and formulate a
mathematical goal functional J measuring the presence of the desired property.

We then solve the following OPC to find an optimal nuclear density µ ∈ Anuc :

min J[φ, φH , φL, µ]

over all (φ, φH , φL, µ) ∈ A×AH
φ ×AL

φ ×Anuc such that

(i) (φ1, . . . , φn) are ground state orbitals,

(ii) φH is a HOMO,

(iii) φL is a LUMO

corresponding to µ.

Among other choices, we will later specify J to be the charge transfer functional
which measures the spatial separation between HOMO and LUMO.
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Properties of the Kohn–Sham Energy Functional

We have the following bounds and continuity properties for

Eµ[φ1, . . . , φn] :=

n∑
i=1

∫
R3
|∇φi |2︸ ︷︷ ︸

T [φ]

−
∫
R3

( 1
| · | ∗ µ

)
ρ︸ ︷︷ ︸

Vext [ρ]

+
1
2

∫
R3

( 1
| · | ∗ ρ

)
ρ︸ ︷︷ ︸

JH [ρ]

.

Lemma

I T [φ] ≥
1
2
T [φ] + c‖ρ‖3 with some c > 0, and

φ 7→ T [φ] is continuous and weakly lower semicontinuous on H1(Ω)n.

I Vext [ρ] ≥ −‖µ‖M sup
a∈R3

∥∥∥ 1
| · −a|

∥∥∥
2
‖ρ‖1/41 ‖ρ‖

3/4
3 , and

(φ, µ) 7→ Vext [ρ] is strong × weak* continuous on L4(Ω)n ×M(Ωnuc).

I JH [ρ] ≥ 0, and φ 7→ JH [ρ] is continuous on L12/5(R3)n.
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Properties of the Excitation Functional

Together with ρχ = |χ|2, similar results are valid for

Eµ,φ[χ] := 〈χ, hφχ〉 =
1
2

∫
Ω

|∇χ|2 −
∫
Ω

( 1
| · | ∗ µ

)
ρχ +

∫
Ω

( 1
| · | ∗ ρ

)
ρχ.

Lemma

I
∫
Ω

|∇χ|2 ≥
1
2

∫
Ω

|∇χ|2 + c‖ρχ‖3 with some c > 0, and

χ 7→
∫
Ω |∇χ|

2 is continuous and weakly lower semicontinuous on H1(Ω).

I
∫
Ω

vext ρχ ≥ −‖µ‖M sup
a∈R3

∥∥∥ 1
| · −a|

∥∥∥
2
‖ρχ‖1/41 ‖ρχ‖

3/4
3 , and

(χ, µ) 7→
∫

vext ρχ is strong × weak* continuous on L4(Ω)×M(Ωnuc).

I
∫
Ω

( 1
| · | ∗ ρ

)
ρχ ≥ 0 and (φ, χ) 7→

∫ ( 1
|·| ∗ ρ

)
ρχ is continuous on L12/5(Ω)n+1.
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Existence of Ground State Orbitals, HOMO and LUMO

Lemma
I A is weakly closed in H1(Ω)n.
I For any φ ∈ A, the sets AH

φ and AL
φ are weakly closed in H1(Ω).

Proposition
For any µ ∈ Anuc , there exists a minimizing set of orbitals φ for the Kohn–Sham
energy functional Eµ[φ] on the admissible set A.

Proposition
For any µ ∈ Anuc and any set of orbitals φ ∈ A, the excitation functional Eµ,φ[χ]
possesses a maximizer φH on AH

φ and a minimizer φL on AL
φ.
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The Set of HOMO–LUMO Excitations

Theorem
The joint solution set for occupied KS orbitals, HOMO, and LUMO
parametrized by the set of nuclear charge distributions µ,

B :=

{
(φ, φH , φL, µ)

∣∣µ ∈ Anuc , φ ∈ argmin
{
Eµ[ψ]

∣∣ψ ∈ A},
φH ∈ argmax

{
Eµ,φ[χ]

∣∣χ ∈ AH
φ

}
φL ∈ argmin

{
Eµ,φ[χ]

∣∣χ ∈ AL
φ

}}
,

has the following properties:

(1) It is weak × weak* closed in H1(Ω)n+2 ×M(Ωnuc).

(2) It is strong × weak* compact in H1(Ω)n+2 ×M(Ωnuc).
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The Set of HOMO–LUMO Excitations

Sketch of Proof for (1). Let
(
φ(k), φ

(k)
H , φ

(k)
L

)
⇀ (φ, φH , φL) in H1(Ω)n+2 and

µ(k) ∗⇀ µ inM(Ωnuc). We need to check that (a) φ ∈ argminA Eµ,
(b) φH ∈ argmaxAH

φ
Eµ,φ, (c) φL ∈ argminAL

φ
Eµ,φ, (d) µ ∈ Anuc .

We only prove (a). For fixed ψ ∈ A, we have

Eµ(k) [φ(k)] ≤ Eµ(k) [ψ]→ Eµ[ψ]

and, hence, lim supk→∞ Eµ(k) [φ(k)] ≤ Eµ[ψ]. Since ψ ∈ A was arbitrary, we obtain

lim sup
k→∞

Eµ(k) [φ(k)] ≤ inf
A
Eµ.

And the weak×weak* lower semicontinuity of (φ, µ) 7→ Eµ[φ] gives rise to

lim inf
k→∞

Eµ(k) [φ(k)] ≥ Eµ[φ].

By the weak closedness of A, we know that φ ∈ A and, hence, Eµ[φ] = infA Eµ.
Michael Kniely New Optimal Control Problems in DFT motivated by Photovoltaics MOANSI 2018 15
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The Set of HOMO–LUMO Excitations

Sketch of Proof for (2). Let
(
φ(k), φ

(k)
H , φ

(k)
L , µ(k)

)
∈ B. First, φ(k), φ(k)H and

φ
(k)
L are bounded in H1(Ω)n and H1(Ω), respectively. As µ(k) ∈ Anuc , we have∥∥µ(k)

∥∥
M = µ(k)(Ωnuc) = 2n.

Thus, along a subsequence,
(
φ(k), φ

(k)
H , φ

(k)
L

)
⇀
(
φ, φH , φL

)
∈ H1(Ω)n+2 and

µk ∗
⇀ µ ∈M(Ωnuc). From the proof of (1), we further conclude that

Eµ(k) [φ(k)]→ Eµ[φ].

But as V k
ext [ρ

k ]→ Vext [ρ] and JH [ρ
k ]→ JH [ρ], the kinetic energy satisfies

T [φ(k)]→ T [φ].

Now, ∇φ(k) ⇀ ∇φ in L2 and ||∇φ(k)||2 → ||∇φ||2. This implies ∇φ(k) → ∇φ
in L2, φ(k) → φ in (H1)n and φ(k)H → φH in H1. Similarly, φ(k)L → φL in H1.
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Existence of Optimal Excitations

Theorem
The optimal control problem to maximize or minimize J[φ, φH , φL, µ] over

B =

{
(φ, φH , φL, µ)

∣∣µ ∈ Anuc , φ ∈ argmin
{
Eµ[ψ]

∣∣ψ ∈ A},
φH ∈ argmax

{
Eµ,φ[χ]

∣∣χ ∈ AH
φ

}
φL ∈ argmin

{
Eµ,φ[χ]

∣∣χ ∈ AL
φ

}}
,

possesses a solution whenever J[φ, φH , φL, µ] is continuous on B with respect to
strong × weak* convergence in H1(Ω)n+2 ×M(Ωnuc).
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Time Evolution of Excited States

We assume that the time evolution after excitation is governed by

time-dependent density functional theory (TDDFT),

with the static map from density to exchange-correlation potential known as the

adiabatic local density approximation (ALDA).

With the KS orbitals φ, the HOMO φH , and the LUMO φL, we have

i∂tφ
′
j(·, t) = hφ′(·,t)φ

′
j(·, t), φ′j(·, 0) = φ′j

for all 1 ≤ j ≤ n. The new electronic density contributing to hφ′(·,t) reads

ρ′(·, t) = 2
n∑

j=1

|φ′j(·, t)|2

and the initial conditions are given by the new orbitals after excitation:{
φ′1, ..., φ

′
n−1 form an ONB of

{
χ ∈ Span {φ1, ..., φn}

∣∣ 〈φH , χ〉 = 0
}
,

φ′n = φL.
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Electronic Orbitals of a Pure Carbon Chain

I Ground State: Orbitals 1 – 60 doubly occupied
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I Electronic density is almost periodic up to the boundary
I HOMO and LUMO are symmetric with respect to the origin

Michael Kniely New Optimal Control Problems in DFT motivated by Photovoltaics MOANSI 2018 20



Institute of Science and Technology (IST Austria)

Orbital Energies of a Pure Carbon Chain

I Excited State: Orbitals 1 – 59 and 61 doubly occupied
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I Band structure with core states and a pronounced bandgap
I Bandgap between HOMO and LUMO is stable under time evolution
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1D Optimal Control Problem

We consider
I 20 equidistant atoms at pj ∈ [−10, 10]
I atomic cores as sharply peaked Gaussians
I a pure carbon chain as the starting point
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Within the optimization procedure, we
I only vary the proton numbers of the atoms
I preserve the total number of protons
I stick to the elements Lithium, . . . , Fluorine
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1D Optimal Control Problem

max J[µ] =
∣∣∣∣ ∫ 10

−10
x
(
|φ60|2 − |φ61|2

)
dx
∣∣∣∣

where φi is the i-th electronic eigenstate of the Kohn–Sham Hamiltonian

hφ = −
1
2

d2

dx2
+ V

corresponding to the i-th lowest eigenvalue εi . Hence, hφφi = εiφi . For the
Kohn–Sham potential V , we only take the Coulomb part into account:

V = vd ∗ (ρ− µ)

with an effective potential [BSCA2003, CF2015]

vd(x) =
√
π

2d
exp

(
x2

4d2

)
erfc

( x
2d

)
.
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1D Optimal Control Problem

max J[µ] =
∣∣∣∣ ∫ 10

−10
x
(
|φ60|2 − |φ61|2

)
dx
∣∣∣∣

where (
−
1
2

d2

dx2
+ vd ∗ (ρ− µ)

)
φi = εiφi

and

ρ = 2
60∑
i=1

|φi |2, µ =

20∑
j=1

ajN (pj , σ
2).

We optimize J w.r.t. (aj)
20
j=1, the proton numbers of the corresponding atoms,

while preserving the number of protons and restricting to seven elements:

20∑
j=1

aj = 120 and 3 ≤ aj ≤ 9.
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Numerical Scheme for the 1D Problem

Algorithm 1: Find a “local maximum” of the charge transfer functional J
Input: n, p, iter
Output: a
begin

a← (6)20i=1
for i = 1 : iter do

generate n(i) random directions h ∈ {−1, 0, 1}20 with
P(1) = P(−1) = p(i),

∑20
k=1 hk = 0 and a + h ∈ ([3, 9] ∩ Z)20

a← a + t∗h∗ where t∗ ∈ {−1, 0, 1} and a + t∗h∗ yields the maximal
J[a+ th] among all admissible t ∈ {−1, 0, 1} and h generated so far
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Numerical Scheme for the 1D Problem

We perform four iterations using the following values for n(i) and p(i):

i 1 2 3 4

Number of directions n(i) 10 20 40 80

Probability p(i) for hj = 1 1/3 1/6 1/12 1/24

p(i) = 1/3 · 2−i+1

I p(5) = 1/48 < 1/20 ⇒ almost no difference between the fourth and a
fifth step concerning the sparsity of the search directions

n(i) = 10 · 2i−1

I more detailed exploration of the approximately 320 admissible directions in
the space {3, . . . , 9}20 for smaller step sizes
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Output of the Optimization Algorithm

Our optimization technique iteratively improves the atomic configuration and
finishes after four iterations. We initialize the algorithm with a(0) = (6)20i=1.

a(1) = (5 5 7 5 6 5 5 6 7 5 . . .

6 7 5 5 6 7 7 7 7 7)
J[a(1)] = 12.2992


a(4) = (4 5 6 6 7 6 5 6 7 5 . . .

6 7 6 5 6 5 6 6 8 8)
J[a(4)] = 15.9321

a(2) = (4 4 6 5 7 5 5 6 7 5 . . .

6 7 6 5 6 6 7 7 8 8)
J[a(2)] = 15.2400


a(3) = (4 4 7 6 7 6 5 6 7 5 . . .

6 7 6 5 6 5 6 6 8 8)
J[a(3)] = 15.8363
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Ground State for the “Optimal” Nuclear Density

I Ground State: Orbitals 1 – 60 doubly occupied
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I Electronic density resembles the distribution of nuclear charges
I HOMO and LUMO are accumulated to opposite sides of the system
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Temporal Evolution of the Excited State

I Excited State: Orbitals 1 – 59 and 61 doubly occupied
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I Charge transfer persistent over (at least) 10 atomic units of time
I Average position of CoM of HOMO and LUMO slightly varies with time
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1. Motivation and the Kohn–Sham Equations

2. Optimal Control Problems and Optimal Nuclear Densities

3. Charge Transfer Problem for a Chain of Atoms

4. Other Objective Functionals
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Maximal Lifetime

We minimize the inverse lifetime functional L of a nuclear configuration:

L(φ, φh, φL) :=
∥∥[hexc , γexc ]

∥∥2
HS = 2

∑
i occ.exc.

∥∥(I − γexc)(hexc − hgrd )φi
∥∥2
2

where γexc is the density matrix of occupied orbitals in the excited state.

I Simplified structure of L
due to [hgrd , γexc ] = 0

I Remarkable correlation
between inverse lifetime
and charge transfer

I Upper bound for lifetime
for given charge transfer?
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Maximal Lifetime
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I Nuclear charge is asymmetric and “opposite” to HOMO and LUMO
I Nearly identical shapes of HOMO and LUMO ⇒ hexc ≈ hgrd ⇒ L small
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Minimal Overlap

It might also be feasible to minimize the spatial overlap functional O:

O(φH , φL) :=

∫
Ω

|φH |2|φL|2 dx .

I | · |2 due to orthogonality of
φH and φL

I Inverse correlation between
spatial overlap and charge
transfer

I Increasing concentration of
iterates to certain regions?

Charge Transfer

-20 -15 -10 -5 0 5 10 15 20

O
v
e

rl
a
p

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Correlation between charge transfer and overlap

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Michael Kniely New Optimal Control Problems in DFT motivated by Photovoltaics MOANSI 2018 32



Institute of Science and Technology (IST Austria)

Minimal Overlap

It might also be feasible to minimize the spatial overlap functional O:

O(φH , φL) :=

∫
Ω

|φH |2|φL|2 dx .

I | · |2 due to orthogonality of
φH and φL

I Inverse correlation between
spatial overlap and charge
transfer

I Increasing concentration of
iterates to certain regions?

Charge Transfer

-20 -15 -10 -5 0 5 10 15 20

O
v
e

rl
a

p

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Correlation between charge transfer and overlap

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Michael Kniely New Optimal Control Problems in DFT motivated by Photovoltaics MOANSI 2018 32



Institute of Science and Technology (IST Austria)

Minimal Overlap
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I HOMO and LUMO are separated on opposite sides of the domain
I Similar results as in the case of maximal charge transfer
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Bandgap Design

In analogy to the position separation, one can also design the energy separation:

B(φ, φH , φL, µ) := 〈φL | hgrd | φL〉 − 〈φH | hgrd | φH〉.

In fact, J = tr(x(γexc − γgrd)) and B = tr(hgrd (γexc − γgrd)).

I Minimize |B − 3| I Maximize B
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Conclusion and Outlook

Our optimal control problems reveal a remarkable multi-scale structure:
I Atoms located on an equidistant grid (order 1)
I Internal wavelength of HOMO and LUMO (order 0.1)
I Possible separation of HOMO and LUMO (order 10)

Future Work
I Generalize the optimization approach
I Investigate also 2D- and 3D-versions of the problem
I Harvest the charge separation to generate an electric current
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