The variational projector augmented-wave method for periodic Hamiltonians with Coulomb potentials

M.-S. Dupuy¹

¹Faculty of Mathematics, TU Munich

MOANSI annual meeting, October 2018

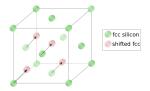


Figure: Silicon unit cell

Figure: Silicon

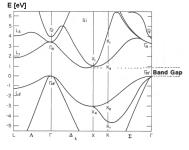


Figure: Silicon band diagram

Periodic Hamiltonian Consider real-valued $V_{\rm per}$ \mathbb{Z}^3 -periodic function

 $H = -\Delta + V_{
m per}$, acting on $L^2(\mathbb{R}^3)$ with domain $H^2(\mathbb{R}^3)$

By Bloch theory

$$\sigma(H) = \bigcup_{\mathbf{q} \in [-\pi,\pi)^3} \sigma(H_{\mathbf{q}}),$$

where $H_{\mathbf{q}}$ is acting on $L^2_{\mathrm{per}}([0,1)^3)$

$$H_{\mathbf{q}} = -|\nabla + i\mathbf{q}|^2 + V_{\mathrm{per}}, \quad \sigma(H_{\mathbf{q}}) = \{E_1 \leq E_2 \leq \cdots \rightarrow \infty\}$$

Goal

Solve

$$H_{\mathbf{q}}\psi_k = E_k\psi_k, \quad E_1 \leq E_2 \leq \dots$$

Periodic problem \Rightarrow plane-wave discretization

Advantages

- orthonormal basis
- kinetic operator is diagonal
- Fast Fourier transform
- efficient preconditioner for iterative solvers

Plane-wave convergence rate = regularity of the eigenfunction

Potential V_{per} : $V_{per} = V_{coul} + W_{per}$ with W_{per} smooth, \mathbb{Z}^3 -periodic function,

$$\begin{cases} -\Delta V_{\text{coul}} = 4\pi \left(\sum_{\mathbf{T} \in \mathcal{R}} \sum_{I=1}^{N_{at}} Z_I(\delta_{\mathbf{R}_I + \mathbf{T}} - 1) \right) \\ V_{\text{coul}} \text{ is } \mathcal{R}\text{-periodic.} \end{cases}$$

Regularity of the eigenfunctions

By Sobolev embedding $H_{\text{per}}^{3/2+\varepsilon}([0,1)^3) \hookrightarrow C_{\text{per}}^0([0,1)^3)$ for all $\varepsilon > 0$. \Rightarrow the potential V_{coul} has $H_{\text{per}}^{1/2-\varepsilon}([0,1)^3)$ regularity \Rightarrow by elliptic regularity, an eigenfunction $\psi \in H_{\text{per}}^{5/2-\varepsilon}([0,1)^3)$.

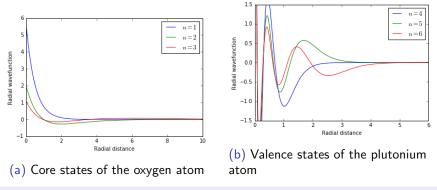
Convergence rate

 (ψ, E) an eigenpair, M > 0 plane-wave cutoff

$$\|\psi - \Pi_M \psi\|_{H^1} \leq \frac{C}{M^{3/2-\varepsilon}} \|\psi\|_{H^{5/2-\varepsilon}} \Rightarrow |E_M - E| \leq \frac{C}{M^{3-\varepsilon}}$$

Main issues:

- cusp located at each nucleus.
- oscillations close to a nucleus of the valence electrons wave functions.



 \Rightarrow Need a large plane-wave basis to solve accurately the eigenvalue problem

Different approaches to simplify the problem

• Muffin-tin methods: change the basis functions

 $\mathbf{r} \mapsto \begin{cases} \sum_{l,|m| \leq L} \alpha_{lm} \chi_l(|\mathbf{r}|) Y_m^l(\mathbf{r}) & \text{in a ball around each nucleus} \\ e^{i\mathbf{K} \cdot \mathbf{r}} & \text{otherwise} \end{cases}$

see Chen, Schneider M2AN (2015)

- Pseudopotentials: regularize the potential Instead of solving (−Δ + V_{per})ψ = Eψ, solve (−Δ + V)ψ̃ = Ẽψ̃
 - \mathcal{V} nonlocal, regular operator
 - \widetilde{E} not equal to the original eigenvalue E

see Cancès, Chakir, Maday M2AN (2012) and Cancès & Mourad, Commun. Math. Sci. (2017)

• PAW/VPAW method

The PAW method (Blöchl 94)

Idea:

• apply an invertible operator (Id + T) to $H\psi=E\psi$:

$$(\mathrm{Id} + T)^* H (\mathrm{Id} + T) \widetilde{\psi} = E (\mathrm{Id} + T)^* (\mathrm{Id} + T) \widetilde{\psi}$$

• expand $\widetilde{\psi}$ in plane-waves \Rightarrow hope $\widetilde{\psi}$ is smoother than ψ .

Advantages

- actual wave function easily recovered : $\psi = (\mathrm{Id} + T)\widetilde{\psi}$
- compute the same eigenvalue

How to choose T ?

Remarks on the singularity

- ψ is smooth everywhere except at the positions of the nuclei
- Kato cusp condition: ψ
 spherical average around a singularity at R_I of charge Z_I:

$$\frac{\partial \overline{\psi}}{\partial r}(0) = -Z_I \psi(\mathbf{R}_I).$$

Universal condition !

Idea

- use atomic eigenfunctions ϕ_i to keep this information,
- want (Id + T) to map smooth functions φ_i: :

$$\text{if }\psi\simeq\sum c_i\phi_i\Rightarrow\widetilde{\psi}=(\mathrm{Id}+\mathcal{T})^{-1}\psi\simeq(\mathrm{Id}+\mathcal{T})^{-1}\sum c_i\phi_i=\sum c_i\widetilde{\phi}_i.$$

Construction of T

$$T = \sum_{I=1}^{N_{\rm at}} T_I,$$

 T_I acting locally on each nucleus given by

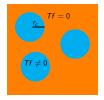


Figure: Unit cell with PAW balls in blue

$$T_{I} = \sum_{i=1}^{N_{\text{paw}}} (\phi_{i} - \widetilde{\phi}_{i}) (\cdot - \mathbf{R}_{I}) \langle \widetilde{p}_{i} (\cdot - \mathbf{R}_{I}), \bullet \rangle$$

• variational PAW (VPAW) method:

Λ1

- $N_{\rm paw} < \infty$
- keep the Coulomb singular potential

• PAW method:

- $N_{\text{paw}} = \infty$ and $(\widetilde{\phi}_i)$ basis of $L^2(B_{r_c})$
 - Can elegantly rewrite the expression of the PAW Hamiltonian
 - \Rightarrow enable to introduce a pseudopotential in a consistent way
- \blacktriangleright as $\textit{N}_{\rm paw}=\infty,$ in practice, need to truncate \Rightarrow introduce an error

PAW/VPAW functions:

• ϕ_i eigenfunctions of an atomic Hamiltonian

$$\left(-\Delta - \frac{Z_I}{|\mathbf{r}|} + \rho_I \star \frac{1}{|\cdot|}\right)\phi_i = \epsilon_i\phi_i$$

- $\tilde{\phi}_i = \phi_i$ outside a ball B_{r_c} , $\tilde{\phi}_i$ smooth inside B_{r_c} and matches ϕ_i and some of its derivatives on the sphere $\{|\mathbf{r}| = r_c\}$
- \widetilde{p}_i is smooth, $\operatorname{supp}(\widetilde{p}_i) \subset B_{r_c}$ and is a dual basis to the ϕ_i : $\langle \widetilde{p}_i | \widetilde{\phi}_j \rangle = \delta_{ij}$

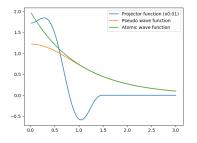


Figure: Plot of some PAW functions for $r_c = 1.5$

M.-S. Dupuy (TUM)

The VPAW method

By definition:

$$(\mathrm{Id} + T_I)\widetilde{\phi}_i = \widetilde{\phi}_i + \sum_{j=1}^{N_{\mathrm{paw}}} \underbrace{\langle \widetilde{p}_j, \widetilde{\phi}_i \rangle}_{=\delta_{ij}} (\phi_j - \widetilde{\phi}_j) = \phi_i$$

Suppose $\psi = \sum\limits_{j=1}^{N} c_j \phi_j$, for $N \in \mathbb{N}$, then

$$\widetilde{\psi} = (\mathrm{Id} + T)^{-1}\psi = (\mathrm{Id} + T)^{-1}\left(\sum_{j=1}^{N} c_j\phi_j\right) = \sum_{j=1}^{N} c_j\widetilde{\phi}_j$$

 $\Rightarrow \widetilde{\psi}$ is smoother than ψ !

VPAW method for 3D linear Hamiltonians

Model Hamiltonian H acting on $L^2_{per}([0,1)^3)$ and domain $H^2_{per}([0,1)^3)$:

$$H = -\Delta + V_{\rm coul} + W_{\rm per},$$

where $W_{\rm per}$ is \mathbb{Z}^3 -periodic and smooth and $V_{\rm coul}$ is given by

$$\begin{cases} -\Delta V_{\text{coul}} = 4\pi \left(\sum_{\mathbf{T} \in \mathcal{R}} \sum_{I=1}^{N_{\text{at}}} Z_I \left(\delta_{\mathbf{R}_I} (\cdot + \mathbf{T}) - 1 \right) \right) \\ V_{\text{coul}} \text{ is } \mathcal{R}\text{-periodic.} \end{cases}$$

How do the eigenfunctions of H behave near a nucleus?

Weighted Sobolev space

Let $k \in \mathbb{N}$ and $\gamma \in \mathbb{R}$. We define the k-th weighted Sobolev space with index γ by:

$$\mathcal{K}^{k,\gamma}([0,1)^3) = \left\{ u \in L^2_{ ext{per}}([0,1)^3) : arrho^{|lpha|-\gamma}\partial^lpha u \in L^2_{ ext{per}}([0,1)^3) \; orall \; |lpha| \leq k
ight\},$$

 ϱ nonnegative function s.t. $\forall I = 1, \dots, N_{at}, \ \varrho(\mathbf{R}_I + \mathbf{r}) = |\mathbf{r}|$ for small \mathbf{r} .

Weighted Sobolev space with asymptotic type $\sum_{j \in \mathbb{N}} c_j(\hat{\mathbf{r}}) r^j$ $\mathscr{K}^{k,\gamma}([0,1)^3) = \left\{ u \in \mathcal{K}^{k,\gamma}([0,1)^3) \middle| \forall n \in \mathbb{N}, \eta_n \in \mathcal{K}^{k,\gamma+n+1}([0,1)^3), u^j \right\}$

$$\forall x \in [0,1)^3, \ \eta_n(x) = u(x) - \sum_{I=1}^{N_{at}} \omega(|x-R_I|) \sum_{j=0}^n c_j^I(\widehat{x-R_I}) |x-R_I|^j \right\},$$

where $c_j^I \in \text{Span}(Y_{\ell m}, |m| \le \ell \le j)$

Theorem (Hunsicker, Nistor, Sofo (2008))

Let ψ be an eigenfunction of H and $\varepsilon > 0$. Then for all $n \in \mathbb{N}$:

$$\begin{split} \psi - \sum_{I=1}^{N_{\mathrm{at}}} \omega(|\mathbf{r} - \mathbf{R}_I|) \sum_{j=0}^n c_j^I(\widehat{\mathbf{r} - \mathbf{R}_I}) |\mathbf{r} - \mathbf{R}_I|^j \in \mathcal{K}^{\infty, \frac{5}{2} + n - \varepsilon}([0, 1)^3) \\ & \subset H_{\mathrm{per}}^{\frac{5}{2} + n - \varepsilon}([0, 1)^3), \end{split}$$

with ω smooth, nonnegative cut-off function such that $\omega = 1$ near 0 and $\omega = 0$ outside some neighbourhood of 0 and $c_j \in \text{span}(Y_{\ell m}, |m| \le \ell \le j)$.

For n = 1, for **r** sufficiently small,

$$\psi(\mathbf{r}) = \psi(0) + \sum_{\substack{m=-1\\\text{smooth}}}^{1} c_{1m} r Y_{1m}(\hat{\mathbf{r}}) + c_{00} r Y_{00}(\hat{\mathbf{r}}) + \underbrace{\eta(\mathbf{r})}_{\in H_{\text{per}}^{\frac{7}{2}-\varepsilon}([0,1)^3)}$$
$$= -Z\psi(0)r + \widetilde{\eta}(\mathbf{r}), \quad \widetilde{\eta} \in H_{\text{per}}^{\frac{7}{2}-\varepsilon}([0,1)^3).$$

The VPAW method

Parameters: r_c radius of PAW balls, N_{paw} number of PAW functions, d smoothness of the pseudo WF.

Atomic WF	$\phi_k(\mathbf{r}) = \phi_k(r)$	Cusp at 0
Pseudo WF	$\widetilde{\phi}(\mathbf{r}) = \widetilde{\phi}_k(r)$	<i>d</i> -th der. jump at $\{r = r_c\}$
Projector function	$\widetilde{p}_k(\mathbf{r}) = \widetilde{p}_k(r)$	Dual basis: $\langle \widetilde{p}_j, \widetilde{\phi}_k \rangle = \delta_{jk}$
VPAW transform	$T = \sum_{i=1}^{N_{\mathrm{paw}}} \langle \widetilde{ ho}_i, ullet angle (\phi_i - \widetilde{\phi}_i)$	$\psi = (\mathrm{Id} + \mathcal{T})\widetilde{\psi}$

Decomposition of the VPAW wave function $\widetilde{\psi}\,$ near a nucleus

$$egin{aligned} \widetilde{\psi} &= \psi - \sum_{i=1}^{N_{\mathrm{paw}}} \langle \widetilde{p}_i, \widetilde{\psi}
angle (\phi_i - \widetilde{\phi}_i) = -\omega Z \psi(0) r + \eta - \sum_{i=1}^{N_{\mathrm{paw}}} \langle \widetilde{p}_i, \widetilde{\psi}
angle (\phi_i - \widetilde{\phi}_i) \ &= \omega \left(-Z \psi(0) r - \sum_{i=1}^{N_{\mathrm{paw}}} \langle \widetilde{p}_i, \widetilde{\psi}
angle (\phi_i - \widetilde{\phi}_i)
ight) + (1 - \omega) \sum_{i=1}^{N_{\mathrm{paw}}} \langle \widetilde{p}_i, \widetilde{\psi}
angle (\phi_i - \widetilde{\phi}_i) + \eta \end{aligned}$$

Let $\widetilde{\psi}_{00}$ be the spherical average of $\widetilde{\psi}$: $\widetilde{\psi}_{00}(r) = \frac{1}{4\pi} \int_{\mathcal{S}(0,1)} \widetilde{\psi}(\mathbf{r}) \, \mathrm{d}\hat{\mathbf{r}}$.

Proposition

For any $(c_k)_{1 \leq k \leq N_{\mathrm{paw}}} \in \mathbb{R}^{N_{\mathrm{paw}}}$,

$$\widetilde{\psi}_{00}'(0) = -Z\left(\psi(0) - \sum_{k=1}^{N_{\text{paw}}} c_k \phi_k(0) - A^{-1} \langle \widetilde{\mathbf{p}}, \psi - \sum_{k=1}^{N_{\text{paw}}} c_k \phi_k \rangle \cdot \mathbf{\Phi}(0)\right),$$

where
$$A = (\langle \widetilde{p}_i, \phi_j \rangle)_{1 \le i, j \le N_{\text{paw}}}, \widetilde{\mathbf{p}} = (\widetilde{p}_1, \dots, \widetilde{p}_{N_{\text{paw}}})^T$$
 and $\mathbf{\Phi}(0) = (\phi_1(0), \dots, \phi_{N_{\text{paw}}}(0))^T$.

 \Rightarrow need to find the **best** set of coefficients (c_k): we can show

• there exists
$$(c_k)_{1 \le k \le N_{\text{paw}}}$$
 such that

$$\|\psi_{00} - \sum_{k=1}^{N_{\text{paw}}} c_k \phi_k\|_{L^2(0,r_c)} \le C r_c^{1/2 + \min(2N_{\text{paw}},5) - \varepsilon},$$

• for any $f \in L^2(B(0, r_c)), |A^{-1}\langle \mathbf{p}, f \rangle \cdot \mathbf{\Phi}(0)| \le \frac{C}{r_c^{3/2}} \|f\|_{L^2(B(0, r_c))}$

Cusp reduction

There exists a constant C independent of r_c such that

$$\left|\widetilde{\psi}_{00}'(0)\right| \leq Cr_c^{\min(2N_{\mathrm{paw}},5)-\varepsilon}$$

Remarks

- decreasing the cut-off radius r_c reduces the cusp
- cannot decrease the cut-off radius too much because of the *d*-th derivative jump

d-th derivative jump at the PAW sphere

There exists a positive constant C independent of r_c such that

$$\left[\widetilde{\psi}^{(d)}\right]_{r_c} \leq \frac{C}{r_c^{d-1}}.$$

VPAW method plane-wave convergence theorem

Theorem (M.D.)

Let E_M be an eigenvalue of the variational approximation of the VPAW eigenvalue problem in a plane-wave basis with wavenumber $|\mathbf{K}| \leq M$, with N_{paw} PAW functions with smoothness $d \geq N_{\text{paw}}$ and cut-off radius r_c . Let E be the corresponding exact eigenvalue. There exists a constant C > 0independent of r_c and M such that for all $\varepsilon > 0$, and for all $\frac{1}{M} < r_c < r_{\min}$:

$$0 < E_M - E \leq C\left(\frac{r_c^{2\min(2N_{\mathrm{paw}},5)-2\varepsilon}}{M^3} + \frac{1}{r_c^{2d-2}}\frac{1}{M^{2d-1}} + o\left(\frac{1}{M^{5-\varepsilon}}\right)\right).$$

For fixed plane-wave cut-off M, d = 6: Optimal r_c : $r_c = \frac{1}{M^{\frac{2d-4}{2\min(2N_{paw},5)+2d-2}}} \Rightarrow E_M - E \le \frac{C}{M^{\frac{59}{9}}}$ for $N_{paw} = 2$ For numerical tests:

$$H = -\frac{1}{2}\Delta - \frac{Z}{|\cdot - \frac{R}{2}|} - \frac{Z}{|\cdot + \frac{R}{2}|}, \text{ with p.b.c. on } \left[-\frac{L}{2}, \frac{L}{2}\right]^3.$$

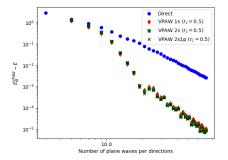


Figure: Error on the lowest eigenvalue against the number of plane-waves per direction (Z = 3, R = 1, L = 5)

Thank you for your attention!