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Figure: Silicon
Figure: Silicon unit cell

Figure: Silicon band diagram
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Periodic Hamiltonian Consider real-valued Vper Z3-periodic function

H = −∆ + Vper, acting on L2(R3) with domain H2(R3)

By Bloch theory

σ(H) =
⋃

q∈[−π,π)3
σ(Hq),

where Hq is acting on L2per([0, 1)3)

Hq = −|∇+ iq|2 + Vper, σ(Hq) = {E1 ≤ E2 ≤ · · · → ∞}

Goal

Solve
Hqψk = Ekψk , E1 ≤ E2 ≤ . . .
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Periodic problem ⇒ plane-wave discretization

Advantages

orthonormal basis

kinetic operator is diagonal

Fast Fourier transform

efficient preconditioner for iterative solvers

Plane-wave convergence rate = regularity of the eigenfunction
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Potential Vper: Vper = Vcoul + Wper with Wper smooth, Z3-periodic
function, −∆Vcoul = 4π

( ∑
T∈R

Nat∑
I=1

ZI (δRI+T − 1)

)
Vcoul is R-periodic.

Regularity of the eigenfunctions

By Sobolev embedding H
3/2+ε
per ([0, 1)3) ↪→ C 0

per([0, 1)3) for all ε > 0.

⇒ the potential Vcoul has H
1/2−ε
per ([0, 1)3) regularity

⇒ by elliptic regularity, an eigenfunction ψ ∈ H
5/2−ε
per ([0, 1)3).

Convergence rate

(ψ,E ) an eigenpair, M > 0 plane-wave cutoff

‖ψ − ΠMψ‖H1 ≤
C

M3/2−ε ‖ψ‖H5/2−ε ⇒ |EM − E | ≤ C

M3−ε

.
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Main issues:

cusp located at each nucleus.

oscillations close to a nucleus of the valence electrons wave functions.

(a) Core states of the oxygen atom
(b) Valence states of the plutonium
atom

⇒ Need a large plane-wave basis to solve accurately the eigenvalue
problem
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Different approaches to simplify the problem

Muffin-tin methods: change the basis functions

r 7→


∑

l ,|m|≤L
αlmχl(|r|)Y l

m(r) in a ball around each nucleus

e iK·r otherwise

see Chen, Schneider M2AN (2015)

Pseudopotentials: regularize the potential

Instead of solving (−∆ + Vper)ψ = Eψ, solve (−∆ + V)ψ̃ = Ẽ ψ̃
I V nonlocal, regular operator
I Ẽ not equal to the original eigenvalue E

see Cancès, Chakir, Maday M2AN (2012) and Cancès & Mourad,
Commun. Math. Sci. (2017)

PAW/VPAW method
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The PAW method (Blöchl 94)

Idea:

apply an invertible operator (Id + T ) to Hψ = Eψ :

(Id + T )∗H(Id + T )ψ̃ = E (Id + T )∗(Id + T )ψ̃

expand ψ̃ in plane-waves

⇒ hope ψ̃ is smoother than ψ.

Advantages

actual wave function easily recovered : ψ = (Id + T )ψ̃

compute the same eigenvalue

How to choose T ?

M.-S. Dupuy (TUM) The VPAW method October 2018 8 / 22



Remarks on the singularity

ψ is smooth everywhere except at the positions of the nuclei

Kato cusp condition: ψ spherical average around a singularity at RI

of charge ZI :
∂ψ

∂r
(0) = −ZIψ(RI ).

Universal condition !

Idea

use atomic eigenfunctions φi to keep this information,

want (Id + T ) to map smooth functions φ̃i to atomic eigenfunctions
φi : :

if ψ '
∑

ciφi ⇒ ψ̃ = (Id+T )−1ψ ' (Id+T )−1
∑

ciφi =
∑

ci φ̃i .
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Construction of T

T =
Nat∑
I=1

TI ,

TI acting locally on each
nucleus given by

rc
Tf = 0

Tf 6= 0

Figure: Unit cell with PAW balls in blue

TI =

Npaw∑
i=1

(φi − φ̃i )(· − RI )〈p̃i (· − RI ), •〉

variational PAW (VPAW) method:
I Npaw <∞
I keep the Coulomb singular potential

PAW method:
I Npaw =∞ and (φ̃i ) basis of L2(Brc )

Can elegantly rewrite the expression of the PAW Hamiltonian
⇒ enable to introduce a pseudopotential in a consistent way

I as Npaw =∞, in practice, need to truncate ⇒ introduce an error
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PAW/VPAW functions:

φi eigenfunctions of an atomic Hamiltonian(
−∆− ZI

|r|
+ ρI ?

1

| · |

)
φi = εiφi

φ̃i = φi outside a ball Brc , φ̃i smooth inside Brc and matches φi and
some of its derivatives on the sphere {|r| = rc}
p̃i is smooth, supp(p̃i ) ⊂ Brc and is a dual basis to the φ̃i :
〈p̃i |φ̃j〉 = δij

Figure: Plot of some PAW functions for rc = 1.5
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By definition:

(Id + TI )φ̃i = φ̃i +

Npaw∑
j=1

〈p̃j , φ̃i 〉︸ ︷︷ ︸
=δij

(φj − φ̃j) = φi

Suppose ψ =
N∑
j=1

cjφj , for N ∈ N, then

ψ̃ = (Id + T )−1ψ = (Id + T )−1

 N∑
j=1

cjφj

 =
N∑
j=1

cj φ̃j

⇒ ψ̃ is smoother than ψ !
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VPAW method for 3D linear Hamiltonians
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Model Hamiltonian H acting on L2per([0, 1)3) and domain H2
per([0, 1)3):

H = −∆ + Vcoul + Wper,

where Wper is Z3-periodic and smooth and Vcoul is given by−∆Vcoul = 4π

( ∑
T∈R

Nat∑
I=1

ZI (δRI
(·+ T)− 1)

)
Vcoul is R-periodic.

How do the eigenfunctions of H behave near a nucleus?
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Weighted Sobolev space

Let k ∈ N and γ ∈ R. We define the k-th weighted Sobolev space with
index γ by:

Kk,γ([0, 1)3) =
{
u ∈ L2per([0, 1)3) : %|α|−γ∂αu ∈ L2per([0, 1)3) ∀ |α| ≤ k

}
,

% nonnegative function s.t. ∀I = 1, . . . ,Nat, %(RI + r) = |r| for small r.

Weighted Sobolev space with asymptotic type
∑
j∈N

cj(r̂)r j

K k,γ([0, 1)3) =

{
u ∈ Kk,γ([0, 1)3)

∣∣∣∣ ∀n ∈ N, ηn ∈ Kk,γ+n+1([0, 1)3),

∀x ∈ [0, 1)3, ηn(x) = u(x)−
Nat∑
I=1

ω(|x − RI |)
n∑

j=0

c Ij (x̂ − RI )|x − RI |j
 ,

where c Ij ∈ Span(Y`m, |m| ≤ ` ≤ j)
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Theorem (Hunsicker, Nistor, Sofo (2008))

Let ψ be an eigenfunction of H and ε > 0. Then for all n ∈ N:

ψ −
Nat∑
I=1

ω(|r − RI |)
n∑

j=0

c Ij (r̂ − RI )|r − RI |j ∈ K∞,
5
2
+n−ε([0, 1)3)

⊂ H
5
2
+n−ε

per ([0, 1)3),

with ω smooth, nonnegative cut-off function such that ω = 1 near 0 and
ω = 0 outside some neighbourhood of 0 and cj ∈ span(Y`m, |m| ≤ ` ≤ j).

For n = 1, for r sufficiently small,

ψ(r) = ψ(0) +
1∑

m=−1
c1mrY1m(r̂)︸ ︷︷ ︸

smooth

+c00rY00(r̂) + η(r)︸︷︷︸
∈H

7
2−ε
per ([0,1)3)

= −Zψ(0)r + η̃(r), η̃ ∈ H
7
2
−ε

per ([0, 1)3).
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The VPAW method
Parameters: rc radius of PAW balls, Npaw number of PAW functions, d
smoothness of the pseudo WF.

Atomic WF φk(r) = φk(r) Cusp at 0

Pseudo WF φ̃(r) = φ̃k(r) d-th der. jump at {r = rc}
Projector function p̃k(r) = p̃k(r) Dual basis: 〈p̃j , φ̃k〉 = δjk

VPAW transform T =
Npaw∑
i=1
〈p̃i , •〉(φi − φ̃i ) ψ = (Id + T )ψ̃

Decomposition of the VPAW wave function ψ̃ near a nucleus

ψ̃ = ψ −
Npaw∑
i=1

〈p̃i , ψ̃〉(φi − φ̃i ) = −ωZψ(0)r + η −
Npaw∑
i=1

〈p̃i , ψ̃〉(φi − φ̃i )

=ω

−Zψ(0)r −
Npaw∑
i=1

〈p̃i , ψ̃〉(φi − φ̃i )

+ (1− ω)

Npaw∑
i=1

〈p̃i , ψ̃〉(φi − φ̃i ) + η
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Let ψ̃00 be the spherical average of ψ̃: ψ̃00(r) = 1
4π

∫
S(0,1) ψ̃(r) dr̂.

Proposition

For any (ck)1≤k≤Npaw ∈ RNpaw ,

ψ̃′00(0) = −Z

ψ(0)−
Npaw∑
k=1

ckφk(0)− A−1〈p̃, ψ −
Npaw∑
k=1

ckφk〉 ·Φ(0)

 ,

where A = (〈p̃i , φj〉)1≤i ,j≤Npaw , p̃ = (p̃1, . . . , p̃Npaw)T and
Φ(0) = (φ1(0), . . . , φNpaw(0))T .

⇒ need to find the best set of coefficients (ck): we can show

there exists (ck)1≤k≤Npaw such that

‖ψ00 −
∑Npaw

k=1 ckφk‖L2(0,rc ) ≤ Crc
1/2+min(2Npaw,5)−ε,

for any f ∈ L2(B(0, rc)), |A−1〈p, f 〉 ·Φ(0)| ≤ C
rc 3/2
‖f ‖L2(B(0,rc ))
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Cusp reduction

There exists a constant C independent of rc such that∣∣∣ψ̃′00(0)
∣∣∣ ≤ Crc

min(2Npaw,5)−ε

Remarks

decreasing the cut-off radius rc reduces the cusp

cannot decrease the cut-off radius too much because of the d-th
derivative jump

d-th derivative jump at the PAW sphere

There exists a positive constant C independent of rc such that∣∣∣∣[ψ̃(d)
]
rc

∣∣∣∣ ≤ C

rcd−1
.
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VPAW method plane-wave convergence theorem

Theorem (M.D.)

Let EM be an eigenvalue of the variational approximation of the VPAW
eigenvalue problem in a plane-wave basis with wavenumber |K| ≤ M, with
Npaw PAW functions with smoothness d ≥ Npaw and cut-off radius rc . Let
E be the corresponding exact eigenvalue. There exists a constant C > 0
independent of rc and M such that for all ε > 0, and for all 1

M < rc < rmin:

0 < EM − E ≤ C

(
rc

2min(2Npaw,5)−2ε

M3
+

1

rc2d−2
1

M2d−1 + o

(
1

M5−ε

))
.

For fixed plane-wave cut-off M, d = 6:

Optimal rc : rc =
1

M
2d−4

2 min(2Npaw,5)+2d−2

⇒ EM − E ≤ C

M
59
9

for Npaw = 2
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For numerical tests:

H = −1

2
∆− Z

| · −R
2 |
− Z

| ·+ R
2 |
, with p.b.c. on

[
−L

2
,
L

2

]3
.

Figure: Error on the lowest eigenvalue against the number of plane-waves per
direction (Z = 3,R = 1, L = 5)
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Thank you for your attention!

M.-S. Dupuy (TUM) The VPAW method October 2018 22 / 22


	VPAW method for 3D linear Hamiltonians
	Cusp reduction


