The variational projector augmented-wave method for periodic Hamiltonians with Coulomb potentials

M.-S. Dupuy ${ }^{1}$
${ }^{1}$ Faculty of Mathematics, TU Munich

MOANSI annual meeting, October 2018

Figure: Silicon

Figure: Silicon unit cell

Figure: Silicon band diagram

Periodic Hamiltonian Consider real-valued $V_{\text {per }} \mathbb{Z}^{3}$-periodic function

$$
H=-\Delta+V_{\text {per }} \text {, acting on } L^{2}\left(\mathbb{R}^{3}\right) \text { with domain } H^{2}\left(\mathbb{R}^{3}\right)
$$

By Bloch theory

$$
\sigma(H)=\bigcup_{\mathbf{q} \in[-\pi, \pi)^{3}} \sigma\left(H_{\mathbf{q}}\right)
$$

where $H_{\mathbf{q}}$ is acting on $L_{\text {per }}^{2}\left([0,1)^{3}\right)$

$$
H_{\mathbf{q}}=-|\nabla+i \mathbf{q}|^{2}+V_{\mathrm{per}}, \quad \sigma\left(H_{\mathbf{q}}\right)=\left\{E_{1} \leq E_{2} \leq \cdots \rightarrow \infty\right\}
$$

Goal

Solve

$$
H_{\mathbf{q}} \psi_{k}=E_{k} \psi_{k}, \quad E_{1} \leq E_{2} \leq \ldots
$$

Periodic problem \Rightarrow plane-wave discretization

Advantages

- orthonormal basis
- kinetic operator is diagonal
- Fast Fourier transform
- efficient preconditioner for iterative solvers

Plane-wave convergence rate $=$ regularity of the eigenfunction

Potential $V_{\text {per }}: V_{\text {per }}=V_{\text {coul }}+W_{\text {per }}$ with $W_{\text {per }}$ smooth, \mathbb{Z}^{3}-periodic function,

$$
\left\{\begin{array}{l}
-\Delta V_{\text {coul }}=4 \pi\left(\sum_{\mathbf{T} \in \mathcal{R}} \sum_{l=1}^{N_{\text {at }}} Z_{l}\left(\delta_{\mathbf{R}_{l}+\mathbf{T}}-1\right)\right) \\
V_{\text {coul }} \text { is } \mathcal{R} \text {-periodic. }
\end{array}\right.
$$

Regularity of the eigenfunctions

By Sobolev embedding $H_{\text {per }}^{3 / 2+\varepsilon}\left([0,1)^{3}\right) \hookrightarrow C_{\text {per }}^{0}\left([0,1)^{3}\right)$ for all $\varepsilon>0$.
\Rightarrow the potential $V_{\text {coul }}$ has $H_{\text {per }}^{1 / 2-\varepsilon}\left([0,1)^{3}\right)$ regularity
\Rightarrow by elliptic regularity, an eigenfunction $\psi \in H_{\text {per }}^{5 / 2-\varepsilon}\left([0,1)^{3}\right)$.

Convergence rate

(ψ, E) an eigenpair, $M>0$ plane-wave cutoff

$$
\left\|\psi-\Pi_{M} \psi\right\|_{H^{1}} \leq \frac{C}{M^{3 / 2-\varepsilon}}\|\psi\|_{H^{5 / 2-\varepsilon}} \Rightarrow\left|E_{M}-E\right| \leq \frac{C}{M^{3-\varepsilon}}
$$

Main issues:

- cusp located at each nucleus.
- oscillations close to a nucleus of the valence electrons wave functions.

(a) Core states of the oxygen atom

(b) Valence states of the plutonium atom
\Rightarrow Need a large plane-wave basis to solve accurately the eigenvalue problem

Different approaches to simplify the problem

- Muffin-tin methods: change the basis functions

$$
\mathbf{r} \mapsto \begin{cases}\sum_{I,|m| \leq L} \alpha_{I m} \chi_{I}(|\mathbf{r}|) Y_{m}^{\prime}(\mathbf{r}) & \text { in a ball around each nucleus } \\ e^{i \mathbf{K} \cdot \mathbf{r}} & \text { otherwise }\end{cases}
$$

see Chen, Schneider M2AN (2015)

- Pseudopotentials: regularize the potential

Instead of solving $\left(-\Delta+V_{\text {per }}\right) \psi=E \psi$, solve $(-\Delta+\mathcal{V}) \widetilde{\psi}=\widetilde{E} \widetilde{\psi}$

- \mathcal{V} nonlocal, regular operator
- \widetilde{E} not equal to the original eigenvalue E
see Cancès, Chakir, Maday M2AN (2012) and Cancès \& Mourad, Commun. Math. Sci. (2017)
- PAW/VPAW method

The PAW method (Blöchl 94)

Idea:

- apply an invertible operator $(\operatorname{Id}+T)$ to $H \psi=E \psi$:

$$
(\operatorname{Id}+T)^{*} H(\operatorname{Id}+T) \widetilde{\psi}=E(\operatorname{Id}+T)^{*}(\operatorname{Id}+T) \widetilde{\psi}
$$

- expand $\tilde{\psi}$ in plane-waves \Rightarrow hope $\widetilde{\psi}$ is smoother than ψ.

Advantages

- actual wave function easily recovered : $\psi=(\operatorname{Id}+T) \widetilde{\psi}$
- compute the same eigenvalue

How to choose T ?

Remarks on the singularity

- ψ is smooth everywhere except at the positions of the nuclei
- Kato cusp condition: $\bar{\psi}$ spherical average around a singularity at $\mathbf{R}_{/}$ of charge Z_{1} :

$$
\frac{\partial \bar{\psi}}{\partial r}(0)=-Z_{l} \psi\left(\mathbf{R}_{l}\right)
$$

Universal condition!

Idea

- use atomic eigenfunctions ϕ_{i} to keep this information,
- want $(\operatorname{Id}+T)$ to map smooth functions $\widetilde{\phi}_{i}$ to atomic eigenfunctions ϕ_{i} : :

$$
\text { if } \psi \simeq \sum c_{i} \phi_{i} \Rightarrow \widetilde{\psi}=(\operatorname{Id}+T)^{-1} \psi \simeq(\operatorname{Id}+T)^{-1} \sum c_{i} \phi_{i}=\sum c_{i} \widetilde{\phi}_{i}
$$

Construction of T

$$
T=\sum_{l=1}^{N_{\mathrm{at}}} T_{l}
$$

T_{l} acting locally on each nucleus given by

Figure: Unit cell with PAW balls in blue

$$
T_{I}=\sum_{i=1}^{N_{\mathrm{paw}}}\left(\phi_{i}-\widetilde{\phi}_{i}\right)\left(\cdot-\mathbf{R}_{l}\right)\left\langle\widetilde{p}_{i}\left(\cdot-\mathbf{R}_{I}\right), \bullet\right\rangle
$$

- variational PAW (VPAW) method:
- $N_{\text {paw }}<\infty$
- keep the Coulomb singular potential
- PAW method:
- $N_{\text {paw }}=\infty$ and $\left(\widetilde{\phi}_{i}\right)$ basis of $L^{2}\left(B_{r_{c}}\right)$

Can elegantly rewrite the expression of the PAW Hamiltonian
\Rightarrow enable to introduce a pseudopotential in a consistent way

- as $N_{\text {paw }}=\infty$, in practice, need to truncate \Rightarrow introduce an error

PAW/VPAW functions:

- ϕ_{i} eigenfunctions of an atomic Hamiltonian

$$
\left(-\Delta-\frac{Z_{I}}{|\mathbf{r}|}+\rho_{I} \star \frac{1}{|\cdot|}\right) \phi_{i}=\epsilon_{i} \phi_{i}
$$

- $\widetilde{\phi}_{i}=\phi_{i}$ outside a ball $B_{r_{c}}, \widetilde{\phi}_{i}$ smooth inside $B_{r_{c}}$ and matches ϕ_{i} and some of its derivatives on the sphere $\left\{|\mathbf{r}|=r_{c}\right\}$
- \widetilde{p}_{i} is smooth, $\operatorname{supp}\left(\widetilde{p}_{i}\right) \subset B_{r_{c}}$ and is a dual basis to the $\widetilde{\phi}_{i}$: $\left\langle\widetilde{p}_{i} \mid \widetilde{\phi}_{j}\right\rangle=\delta_{i j}$

Figure: Plot of some PAW functions for $r_{c}=1.5$

By definition:

$$
\left(\operatorname{Id}+T_{l}\right) \widetilde{\phi}_{i}=\widetilde{\phi}_{i}+\sum_{j=1}^{N_{\mathrm{paw}}} \underbrace{\left\langle\widetilde{p}_{j}, \widetilde{\phi}_{i}\right\rangle}_{=\delta_{i j}}\left(\phi_{j}-\widetilde{\phi}_{j}\right)=\phi_{i}
$$

Suppose $\psi=\sum_{j=1}^{N} c_{j} \phi_{j}$, for $N \in \mathbb{N}$, then

$$
\begin{gathered}
\widetilde{\psi}=(\operatorname{Id}+T)^{-1} \psi
\end{gathered}=(\operatorname{Id}+T)^{-1}\left(\sum_{j=1}^{N} c_{j} \phi_{j}\right)=\sum_{j=1}^{N} c_{j} \widetilde{\phi}_{j} .
$$

VPAW method for 3D linear Hamiltonians

Model Hamiltonian H acting on $L_{\text {per }}^{2}\left([0,1)^{3}\right)$ and domain $H_{\text {per }}^{2}\left([0,1)^{3}\right)$:

$$
H=-\Delta+V_{\mathrm{coul}}+W_{\mathrm{per}},
$$

where $W_{\text {per }}$ is \mathbb{Z}^{3}-periodic and smooth and $V_{\text {coul }}$ is given by

$$
\left\{\begin{array}{l}
-\Delta V_{\text {coul }}=4 \pi\left(\sum_{\mathbf{T} \in \mathcal{R}} \sum_{I=1}^{N_{a t}} Z_{I}\left(\delta_{\mathbf{R}_{l}}(\cdot+\mathbf{T})-1\right)\right) \\
V_{\text {coul }} \text { is } \mathcal{R} \text {-periodic. }
\end{array}\right.
$$

How do the eigenfunctions of H behave near a nucleus?

Weighted Sobolev space

Let $k \in \mathbb{N}$ and $\gamma \in \mathbb{R}$. We define the k-th weighted Sobolev space with index γ by:
$\mathcal{K}^{k, \gamma}\left([0,1)^{3}\right)=\left\{u \in L_{\text {per }}^{2}\left([0,1)^{3}\right): \varrho^{|\alpha|-\gamma} \partial^{\alpha} u \in L_{\text {per }}^{2}\left([0,1)^{3}\right) \forall|\alpha| \leq k\right\}$,
ϱ nonnegative function s.t. $\forall I=1, \ldots, N_{\text {at }}, \varrho\left(\mathbf{R}_{I}+\mathbf{r}\right)=|\mathbf{r}|$ for small \mathbf{r}.

Weighted Sobolev space with asymptotic type $\sum_{j \in \mathbb{N}} c_{j}(\hat{\mathbf{r}}) r^{j}$

$$
\begin{gathered}
\mathscr{K}^{k, \gamma}\left([0,1)^{3}\right)=\left\{u \in \mathcal{K}^{k, \gamma}\left([0,1)^{3}\right) \mid \forall n \in \mathbb{N}, \eta_{n} \in \mathcal{K}^{k, \gamma+n+1}\left([0,1)^{3}\right),\right. \\
\left.\forall x \in[0,1)^{3}, \eta_{n}(x)=u(x)-\sum_{l=1}^{N_{\mathrm{at}}} \omega\left(\left|x-R_{l}\right|\right) \sum_{j=0}^{n} c_{j}^{\prime}\left(\widehat{x-R_{l}}\right)\left|x-R_{l}\right|^{j}\right\},
\end{gathered}
$$

where $c_{j}^{\prime} \in \operatorname{Span}\left(Y_{\ell m},|m| \leq \ell \leq j\right)$

Theorem (Hunsicker, Nistor, Sofo (2008))

Let ψ be an eigenfunction of H and $\varepsilon>0$. Then for all $n \in \mathbb{N}$:

$$
\begin{aligned}
\psi-\sum_{l=1}^{N_{\mathrm{at}}} \omega\left(\left|\mathbf{r}-\mathbf{R}_{l}\right|\right) \sum_{j=0}^{n} c_{j}^{\prime}\left(\widehat{\left.\mathbf{r - \mathbf { R } _ { l }}\right)\left|\mathbf{r}-\mathbf{R}_{l}\right|^{j}} \in \begin{array}{c}
\mathcal{K}^{\infty, \frac{5}{2}+n-\varepsilon}(
\end{array}[0,1)^{3}\right) \\
\subset H_{\mathrm{per}}^{\frac{5}{2}+n-\varepsilon}\left([0,1)^{3}\right)
\end{aligned}
$$

with ω smooth, nonnegative cut-off function such that $\omega=1$ near 0 and $\omega=0$ outside some neighbourhood of 0 and $c_{j} \in \operatorname{span}\left(Y_{\ell m},|m| \leq \ell \leq j\right)$.

For $n=1$, for \mathbf{r} sufficiently small,

$$
\begin{aligned}
\psi(\mathbf{r}) & =\underbrace{\psi(0)+\sum_{m=-1}^{1} c_{1 m} r Y_{1 m}(\hat{\mathbf{r}})}_{\text {smooth }}+c_{00} r Y_{00}(\hat{\mathbf{r}})
\end{aligned}+\underbrace{\eta(\mathbf{r})}_{\in H_{\text {per }}^{\frac{7}{2}-\varepsilon}\left([0,1)^{3}\right)}
$$

The VPAW method

Parameters: r_{c} radius of PAW balls, $N_{\text {paw }}$ number of PAW functions, d smoothness of the pseudo WF.

Atomic WF	$\phi_{k}(\mathbf{r})=\phi_{k}(r)$	Cusp at 0
Pseudo WF	$\widetilde{\phi}(\mathbf{r})=\widetilde{\phi}_{k}(r)$	d-th der. jump at $\left\{r=r_{c}\right\}$
Projector function	$\widetilde{p}_{k}(\mathbf{r})=\widetilde{p}_{k}(r)$	Dual basis: $\left\langle\widetilde{p}_{j}, \widetilde{\phi}_{k}\right\rangle=\delta_{j k}$
VPAW transform	$T=\sum_{i=1}^{N_{\text {paw }}}\left\langle\widetilde{p}_{i}, \bullet\right\rangle\left(\phi_{i}-\widetilde{\phi}_{i}\right)$	$\psi=(\operatorname{Id}+T) \widetilde{\psi}$

Decomposition of the VPAW wave function $\widetilde{\psi}$ near a nucleus
$\widetilde{\psi}=\psi-\sum_{i=1}^{N_{\text {paw }}}\left\langle\widetilde{p}_{i}, \widetilde{\psi}\right\rangle\left(\phi_{i}-\widetilde{\phi}_{i}\right)=-\omega Z \psi(0) r+\eta-\sum_{i=1}^{N_{\text {paw }}}\left\langle\widetilde{p}_{i}, \widetilde{\psi}\right\rangle\left(\phi_{i}-\widetilde{\phi}_{i}\right)$
$=\omega\left(-Z \psi(0) r-\sum_{i=1}^{N_{\text {paw }}}\left\langle\widetilde{p}_{i}, \widetilde{\psi}\right\rangle\left(\phi_{i}-\widetilde{\phi}_{i}\right)\right)+(1-\omega) \sum_{i=1}^{N_{\text {paw }}}\left\langle\widetilde{p}_{i}, \widetilde{\psi}\right\rangle\left(\phi_{i}-\widetilde{\phi}_{i}\right)+\eta$

Let $\widetilde{\psi}_{00}$ be the spherical average of $\widetilde{\psi}: \widetilde{\psi}_{00}(r)=\frac{1}{4 \pi} \int_{S(0,1)} \widetilde{\psi}(\mathbf{r}) \mathrm{d} \hat{\mathbf{r}}$.

Proposition

For any $\left(c_{k}\right)_{1 \leq k \leq N_{\text {paw }}} \in \mathbb{R}^{N_{\text {paw }}}$,

$$
\widetilde{\psi}_{00}^{\prime}(0)=-Z\left(\psi(0)-\sum_{k=1}^{N_{\mathrm{paw}}} c_{k} \phi_{k}(0)-A^{-1}\left\langle\widetilde{\mathbf{p}}, \psi-\sum_{k=1}^{N_{\mathrm{paw}}} c_{k} \phi_{k}\right\rangle \cdot \boldsymbol{\Phi}(0)\right),
$$

where $A=\left(\left\langle\widetilde{p}_{i}, \phi_{j}\right\rangle\right)_{1 \leq i, j \leq N_{\mathrm{paw}}}, \widetilde{\mathbf{p}}=\left(\widetilde{p}_{1}, \ldots, \widetilde{p}_{N_{\text {paw }}}\right)^{T}$ and $\boldsymbol{\Phi}(0)=\left(\phi_{1}(0), \ldots, \phi_{N_{\text {paw }}}(0)\right)^{T}$.
\Rightarrow need to find the best set of coefficients $\left(c_{k}\right)$: we can show

- there exists $\left(c_{k}\right)_{1 \leq k \leq N_{\text {paw }}}$ such that

$$
\left\|\psi_{00}-\sum_{k=1}^{N_{\text {paw }}} c_{k} \phi_{k}\right\|_{L^{2}\left(0, r_{c}\right)} \leq C r_{c}{ }^{1 / 2+\min \left(2 N_{\text {paw }, 5)-\varepsilon},\right.}
$$

- for any $f \in L^{2}\left(B\left(0, r_{c}\right)\right),\left|A^{-1}\langle\mathbf{p}, f\rangle \cdot \boldsymbol{\Phi}(0)\right| \leq \frac{C}{r_{c}^{3 / 2}}\|f\|_{L^{2}\left(B\left(0, r_{c}\right)\right)}$

Cusp reduction

There exists a constant C independent of r_{c} such that

$$
\left|\widetilde{\psi}_{00}^{\prime}(0)\right| \leq C r_{c}^{\min \left(2 N_{\mathrm{paw}}, 5\right)-\varepsilon}
$$

Remarks

- decreasing the cut-off radius r_{c} reduces the cusp
- cannot decrease the cut-off radius too much because of the d-th derivative jump

d-th derivative jump at the PAW sphere

There exists a positive constant C independent of r_{c} such that

$$
\left|\left[\widetilde{\psi}^{(d)}\right]_{r_{c}}\right| \leq \frac{C}{r_{c}^{d-1}} .
$$

VPAW method plane-wave convergence theorem

Theorem (M.D.)

Let E_{M} be an eigenvalue of the variational approximation of the VPAW eigenvalue problem in a plane-wave basis with wavenumber $|\mathbf{K}| \leq M$, with $N_{\text {paw }}$ PAW functions with smoothness $d \geq N_{\text {paw }}$ and cut-off radius r_{c}. Let E be the corresponding exact eigenvalue. There exists a constant $C>0$ independent of r_{c} and M such that for all $\varepsilon>0$, and for all $\frac{1}{M}<r_{c}<r_{\text {min }}$:

$$
0<E_{M}-E \leq C\left(\frac{r_{c}^{2 \min \left(2 N_{\mathrm{paw}, 5)-2 \varepsilon}\right.}}{M^{3}}+\frac{1}{r_{c}^{2 d-2}} \frac{1}{M^{2 d-1}}+o\left(\frac{1}{M^{5-\varepsilon}}\right)\right)
$$

For fixed plane-wave cut-off $M, d=6$:

For numerical tests:

$$
H=-\frac{1}{2} \Delta-\frac{Z}{\left|\cdot-\frac{R}{2}\right|}-\frac{Z}{\left|\cdot+\frac{R}{2}\right|} \text {, with p.b.c. on }\left[-\frac{L}{2}, \frac{L}{2}\right]^{3} .
$$

Figure: Error on the lowest eigenvalue against the number of plane-waves per direction ($Z=3, R=1, L=5$)

Thank you for your attention!

