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Motivation: conformation dynamics of biomolecules

Protein folding

[Noé et al, PNAS, 2009]



Motivation: conformation dynamics of biomolecules

Given a Markov process X = (X;)¢>0, discrete or continuous in
time, we want to estimate probabilities p < 1, such as

p=P(r<T),

or rates
k= (Blr]) ™

with 7 some random first passage time and E[-] the expectation
with respect to the probability P.



Motivation: conformation dynamics of biomolecules

More specifically, we want to estimate the free energy
F=- IogE[e*W] ,

of some functional W of X.

For example, with W = a7 and sufficiently small o > 0, we have

—a'F = E[r] 4+ O(a)



lllustrative example: bistable system

» Overdamped Langevin equation
dX; = —VV(X;)dt + V2edB; .

» MC estimator of 1) = E[e”*7¢]
1 s o
"N __ —arT!
1/15 - N Z;e AT,
=

» Small noise asymptotics (Kramers)

lim elogE[r¢c] = AV.
e—0
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[Freidlin & Wentzell, 1984], [Berglund, Markov Processes Relat Fields 2013]



lllustrative example, cont'd

» Relative error of the MC estimator
o y/veldil
CE[
» Varadhan's large deviations principle
E[(0V] > E[IV)2, € small
» Unbounded relative error as e — 0

limsup d = o0
e—0

[Dupuis & Ellis, 1997]
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Outline

Importance sampling of rare events

Duality of estimation and control

Least-squares Monte Carlo approach



Importance sampling of rare events
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Optimal change of measure: zero variance

Pick another probability measure @ with likelihood ratio

dQ
¢_ﬁ>07

under which the rare event is no longer rare, such that

Elexp(—atc)] = Eq [exp(—aTC)gp_l] .

Zero-variance change of measure exists and is given by

. dQ*  exp(—arc)
7 TP T Elexp(—arc)]’

but it depends on the quantity of interest, E[exp(—at¢)].



Approaching zero variance (non-exhaustive list)

» Exponential tilting based on large deviations statistics:
dQ* ~ exp(y — arc)dP ase— 0,

where + is related to the large deviations rate function.

Siegmund, Glasserman & Kou, Dupuis & Wang, Vanden-Eijnden & Weare, Spiliopoulos,
» Kullback-Leibler or cross-entropy minimisation:

Q" =~ argmin KL(Q, Q¥),
QeM

with @ from some suitable ansatz space M.

Rubinstein & Kroese, Zhang & H, Kappen & Ruiz, Opper, Quer, ...

» Mean square and work-normalised variance minimisation

Glynn & Whitt, Jourdain & Lelong, Su & Fu, Vazquez-Abad & Dufresne, ...



Another idea ...



Exponential tilting from nonequilibrium forcing

Extension g

Single molecule pulling experiments, figure courtesy of G. Hummer, MPI Frankfurt

In vitro/in silico free energy calculation from forcing:
F=—logE[e"].

Forcing generates a “nonequilibrium” path space measure Q with
typically suboptimal likelihood quotient ¢ = dQ/dP.

[Schlitter, J Mol Graph, 1994], [Hummer & Szabo, PNAS, 2001], Schulten & Park, JCP, 2004], ...
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Variational characterization of free energy

Theorem (Donsker & Varadhan)
For any bounded and measurable function W it holds

—Iog]E[e_W] = <5“<2’L{EQ[W] + KL(Q, P)}

where KL(Q, P) > 0 is the relative entropy between Q and P:

i\
KL(Q, P) = /'°g( )dQ o<k

00 otherwise

Sketch of proof: Let ¢ = dP/dQ. Then
flog/ e WapP = 7|og/ e~ WHlergQ < / (W —log ¢) dQ

[Boué & Dupuis, LCDS Report #95-7, 1995], [Dai Pra et al, Math Control Signals Systems, 1996]



Same same, but different. ..



Set-up: uncontrolled ( “equilibrium™) diffusion process

Let X = (Xs)s>0 be a diffusion process on R",
dXs = b(Xs,s)ds + o(Xs)dBs, X = x,

and
W(X) = /t F(Xe,s) ds + g(X,),

for suitable functions f, g and a.s. finite stopping time 7 < oc.

Aim: Estimate the path functional

P(x, t) = Ele” WX



Set-up: controlled (“nonequilibrium™) diffusion process

Now given a controlled diffusion process X" = (X!)s>0,
dX¢ = (b(X{,5) + o(X{)us)ds + o(XS)dBs,  X{' = x,

and a probability @ < P on C([0,00)) with likelihood ratio

) dQ T 1 /7
o(X ):dPFT:exp<—/t us'st—2/t ]us|2ds> .

Now: Estimate the reweigthed path functional

E[G_W(X)] _ E[e—W(X”)((p(Xu))—l]



Variational characterization of free energies, cont'd

Theorem (H, 2012/2017)

Technical details aside, let u™ be a minimiser of the cost functional

1 T
J(u) :IE[W(X“)Jr 2/ \us]2ds}
t
under the controlled dynamics
dXd = (b(X!,s) + o(X)us)ds + o(X)dBs, X! =x.

The minimiser is unique with J(v*) = —log ¢(x, t). Moreover,

B(x,t) = e VXD (X)) (as).

[H & Schiitte, JSTAT, 2012], [H et al, Entropy, 2017]



lllustrative example, cont'd

» Exit problem: f =a, g =0, 7 =7¢:

* : u 1 T 2
J(u ):mmE[aTC—i—/ |us| ds]7
u 4e 0
under the tilted dynamics
dX! = (uy — VV(X!)) dt + V2edB;
» Optimally tilted potential
U*(x,t) = V(x) — u; x

with stationary feedback u} = c(X!").
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Sketch of proof: Fleming's log transformation

By the Feynman-Kac theorem,

P(x,t) =E [exp (—/ f(Xe, t)dt — g(XT)> ‘Xt = x]
t
solves the linear parabolic BVP on Q C [0,00) x R”

. 0
(A=Y =0, vloa, =exp(-g) with A:a_ﬁ
The corresponding semilinear BVP for F = — log 1) reads

1
AF = JIVFR+f=0, Floo. =g with a=00"

[H et al, JSTAT, 2012]; cf. [Schrédinger, Ann Phys, 1923], [Fleming, SIAM J Control, 1978]



Sketch of proof, cont'd
The semilinear Hamilton-Jacobi-Bellmann PDE
1
AF = ZIVFE+f=0, Floo. =g (a=o00")

is the dynamic programming equation for our stochastic control
problem; it solution is the value function

F(x,t) = min{J(u): X{ = x}

If F € C?>! the optimal control has gradient form, i.e.

ui = —o(X")TVF(X{ 1),

Generalizations: degenerate diffusions, Markov chains, ....

[Schiitte et al, Math Prog, 2012], [Banisch & Hartmann, MCRF, 2016], [H et al, Entropy, 2017]



Least-squares Monte Carlo approach



From dynamic programming to a pair of SDE

Let Q C [0, T] x R" be bounded. The semilinear HJB equation

F
% + LF + h(X, F,UTVF) = 0, F‘@QJr =8
is equivalent to the uncoupled forward-backward SDE

dX, = b(Xs, s)ds + o(X:)dBs , X; = x
dYs = _h(X57 Ys, Zs)ds +Zs-dBs, Yr = g(XT) )

where t <s <7< T and

Yo = F(Xs,s), Zs=o0(Xs)"VF(Xs,s).

Formal derivation: Itd's Lemma

[Pardoux & Peng, LNCIS 176, 1992], [Kobylanski, Ann Probab, 2000]



Some remarks
» The solution of the forward-backward SDE (FBSDE)

dXs = b(Xs, 5)ds + o(Xs)dBs , X = x
dYs = 7h(XSa Ys, Zs)ds +Zs-dBs, Yr = g(XT)7

is a triplet (X, Y, Z) where (Y5, Z;) is adapted to (Xu)ue[t,s]-

6

» Hence Y: = F(x,t) is a
deterministic function of the
initial data (x, t), and Z;
controls this property.

4

0
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» The BSDE is not an SDE with time reversed; e.g. for
h =0 and Y1 = X7, the pair (Ys, Zs) = (X7, 0) satisfies the
SDE dYs = Zs - dBs, but it is not adapted.

[Pardoux & Peng, LNCIS 176, 1992], [Kobylanski, Ann Probab, 2000]



Numerical discretisation of FBSDE

The FBSDE is decoupled and an explicit scheme can be based on

Xot

Ko+ Atb(Re, 1) + VBT o(Re)enin
Y, — Ah()A( Z)) + VAt Zy - €nia

~<>
||

Since Y, is adapted we have Y, = E[\A/,,|]-",,] and thus

Y, = E[Y/n-&—l + At h(X, Yo, 2")|‘7:’7}
~ E[Vn—‘rl + At h()%na S\/n—l-l, 2n+1)“/_-.”]

where F,, = U()A(o, .. ,)A(,,) using that Z,is independent of &,11.

[Gobet et al, AAP, 2005], [Bender & Steiner, Num Meth F, 2012], [Kebiri et al, Proc IHP, 2018]



Numerical discretisation of FBSDE, cont'd
The conditional expectation
Yo = E[Yar1 + At h(Xn, Y1, Zoi1) | Fn]

can be computed by least-squares:

E[S|F,] = argmin E[lY —S?].
Y€EL2, F,-measurable
Specifically,
M
Y, ~ arggw Z’ — n+1 — At h(X(m) Yﬁ%lﬁﬂ)‘ ;
m=1

where Y = YK()A(,,) may be a DNN, a Galerkin approximation, etc.

[Gobet et al, AAP, 2005], [Bender & Steiner, Num Meth F, 2012], [Kebiri et al, Proc IHP, 2018]



More remarks

» The scheme is strongly convergent of order 1/2 in At — 0
as M, K — oo (M sample size, K no. of ansatz fcts.).

» A (fictitious) zero-variance change of measure is given by

dQ g 1T
deT:exp(/O ZS-dBS+2/0 \Zs|2ds>7

for 7 < T and the discretisation bias can be further reduced
by using importance sampling.

» Under mild assumptions, the variance of the importance
sampling estimator is no worse than for crude MC.

» Generalisations include unbounded & random 7, singular
terminal condition, least-squares w/ change of drift.

[Turkedjiev, PhD thesis, 2013], [Kruse & Popier, SPA, 2016], [Kebiri & H, Preprint, 2018]



Numerical illustration



Example I: hitting probabilities
Probability of hitting the set C C R before time T:
1 TAT
—logP(r < T)= min]EL/ lu|? dt —log 1oc(X )|,
v 0

with 7 denoting the first hitting time of C under the dynamics

dX! = (u — VV(XY)) dt + V2¢ dB;
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[Zhang et al, SISC, 2014], [Richter, MSc thesis, 2016], [H et al, Nonlinearity, 2016]



Example I, cont'd

Probability of hitting C C R before time T, starting from x = —1:

1 TAT
—logP(r < T) = minE 4/ |ug? dt — log 1o (X2 1)
u
0

(BSDE with singular terminal condition and random stopping time)

Simulation parameters Frer(0, x) F€(0, x) Var
K=8M=300,T=5At=10 3, e=1 0.3949 0.3748 10~3
K=5 M=300,T=1At=10 3, e=1 1.7450 1.6446 0.0248
K=5M=400,T =1,At =10 %, e = 0.6 4.3030 4.5779 103
K=6,M=1450, T =1,At=10 %, e=05 45793 4.6044 5.10" 4

with K the number of Gaussians and M the number of realisations of the forward SDE.

[Ankirchner et al, SICON, 2014], [Kruse & Popier, SPA, 2016],

[Kebiri et al,

Proc IHP, 2018]



Example Il: High-dimensional PDE
First exit time of a Brownian motion from an n-sphere of radius r:
T=inf{t >0: x+B: ¢ 5/}

Cumulant generating function of first exit time satisfies

u

1 T
—log E[exp(—aT)] = minE |:Oé7'u + 2/ |ug|? dt}
u 0

» BSDE on random time horizon with
homogeneous terminal condition

21,12
» mean first exit time E[7] = %

> Least-squares MC w/ K = 3, M ~ 102

n=3 n =10 n = 100 n = 1000
exact 1.00 1.00 1.00 1.00
CMC 0.98 0.99 1.08 1.04
LSMC 0.99 1.01 0.96 0.98

[Kebiri & H, Preprint, 2018]



Conclusions & outlook

» Adaptive importance sampling scheme based on dual
variational formulation; resulting control problem features
short trajectories with minimum variance estimators.

» Variational problem boils down to an uncoupled FBSDE
with only one additional spatial dimension.

» Error analysis for unbounded stopping time & singular
terminal condition is open, least-squares algorithm requires
some fine-tuning (ansatz functions, change of drift, ... ).

» Clever choice of ansatz functions should be combined with
dimension reduction (cf. results for slow-fast systems).



Thank you for your attention!
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