Duality of parameter estimation and control

Carsten Hartmann (BTU Cottbus-Senftenberg), with Omar Kebiri (Tlemcen), Lara Neureither (Cottbus),
Lorenz Richter (Cottbus) and Wei Zhang (Berlin)

GAMM MOANSI
Zuse Institute Berlin, 25-26 October 2018

Motivation: conformation dynamics of biomolecules

Motivation: conformation dynamics of biomolecules

Given a Markov process $X=\left(X_{t}\right)_{t \geq 0}$, discrete or continuous in time, we want to estimate probabilities $p \ll 1$, such as

$$
p=P(\tau<T)
$$

or rates

$$
k=(\mathbb{E}[\tau])^{-1}
$$

with τ some random first passage time and $\mathbb{E}[\cdot]$ the expectation with respect to the probability P.

Motivation: conformation dynamics of biomolecules

More specifically, we want to estimate the free energy

$$
F=-\log \mathbb{E}\left[e^{-W}\right]
$$

of some functional W of X.

For example, with $W=\alpha \tau$ and sufficiently small $\alpha>0$, we have

$$
-\alpha^{-1} F=\mathbb{E}[\tau]+\mathcal{O}(\alpha)
$$

Illustrative example: bistable system

- Overdamped Langevin equation

$$
d X_{t}=-\nabla V\left(X_{t}\right) d t+\sqrt{2 \epsilon} d B_{t} .
$$

- MC estimator of $\psi=\mathbb{E}\left[e^{-\alpha \tau c}\right]$

$$
\hat{\psi}_{\epsilon}^{N}=\frac{1}{N} \sum_{i=1}^{N} e^{-\alpha \tau_{C}^{i}}
$$

- Small noise asymptotics (Kramers)

$$
\lim _{\epsilon \rightarrow 0} \epsilon \log \mathbb{E}\left[\tau_{C}\right]=\Delta V
$$

Illustrative example, cont'd

- Relative error of the MC estimator

$$
\delta_{\epsilon}=\frac{\sqrt{\operatorname{Var}\left[\hat{\psi}_{N}^{\epsilon}\right]}}{\mathbb{E}\left[\hat{\psi}_{N}^{\epsilon}\right]}
$$

- Varadhan's large deviations principle

$$
\mathbb{E}\left[\left(\hat{\psi}_{\epsilon}^{N}\right)^{2}\right] \gg\left(\mathbb{E}\left[\hat{\psi}_{\epsilon}^{N}\right]\right)^{2}, \epsilon \text { small. }
$$

- Unbounded relative error as $\epsilon \rightarrow 0$

$$
\limsup _{\epsilon \rightarrow 0} \delta_{\epsilon}=\infty
$$

Outline

Importance sampling of rare events

Duality of estimation and control

Least-squares Monte Carlo approach

Optimal change of measure: zero variance

Pick another probability measure Q with likelihood ratio

$$
\varphi=\frac{d Q}{d P}>0
$$

under which the rare event is no longer rare, such that

$$
\mathbb{E}\left[\exp \left(-\alpha \tau_{C}\right)\right]=\mathbb{E}_{Q}\left[\exp \left(-\alpha \tau_{C}\right) \varphi^{-1}\right]
$$

Zero-variance change of measure exists and is given by

$$
\varphi^{*}=\frac{d Q^{*}}{d P}=\frac{\exp \left(-\alpha \tau_{C}\right)}{\mathbb{E}\left[\exp \left(-\alpha \tau_{C}\right)\right]}
$$

but it depends on the quantity of interest, $\mathbb{E}\left[\exp \left(-\alpha \tau_{C}\right)\right]$.

Approaching zero variance (non-exhaustive list)

- Exponential tilting based on large deviations statistics:

$$
d Q^{*} \approx \exp \left(\gamma-\alpha \tau_{c}\right) d P \quad \text { as } \epsilon \rightarrow 0
$$

where γ is related to the large deviations rate function.
Siegmund, Glasserman \& Kou, Dupuis \& Wang, Vanden-Eijnden \& Weare, Spiliopoulos, ...

- Kullback-Leibler or cross-entropy minimisation:

$$
Q^{*} \approx \underset{Q \in \mathcal{M}}{\operatorname{argmin}} K L\left(Q, Q^{*}\right),
$$

with Q from some suitable ansatz space \mathcal{M}.
Rubinstein \& Kroese, Zhang \& H, Kappen \& Ruiz, Opper, Quer, ...

- Mean square and work-normalised variance minimisation

Glynn \& Whitt, Jourdain \& Lelong, Su \& Fu, Vázquez-Abad \& Dufresne, ...

Another idea

Exponential tilting from nonequilibrium forcing

Single molecule pulling experiments, figure courtesy of G. Hummer, MPI Frankfurt
In vitro/in silico free energy calculation from forcing:

$$
F=-\log \mathbb{E}\left[e^{-W}\right]
$$

Forcing generates a "nonequilibrium" path space measure Q with typically suboptimal likelihood quotient $\varphi=d Q / d P$.

Duality of estimation and control

Variational characterization of free energy

Theorem (Donsker \& Varadhan)
For any bounded and measurable function W it holds

$$
-\log \mathbb{E}\left[e^{-W}\right]=\min _{Q \ll P}\left\{\mathbb{E}_{Q}[W]+K L(Q, P)\right\}
$$

where $K L(Q, P) \geq 0$ is the relative entropy between Q and P :

$$
K L(Q, P)= \begin{cases}\int \log \left(\frac{d Q}{d P}\right) d Q & \text { if } Q \ll P \\ \infty & \text { otherwise }\end{cases}
$$

Sketch of proof: Let $\varphi=d P / d Q$. Then

$$
-\log \int e^{-W} d P=-\log \int e^{-W+\log \varphi} d Q \leq \int(W-\log \varphi) d Q
$$

Same same, but different. . .

Set-up: uncontrolled ("equilibrium") diffusion process

Let $X=\left(X_{s}\right)_{s \geq 0}$ be a diffusion process on \mathbb{R}^{n},

$$
d X_{s}=b\left(X_{s}, s\right) d s+\sigma\left(X_{s}\right) d B_{s}, \quad X_{t}=x
$$

and

$$
W(X)=\int_{t}^{\tau} f\left(X_{s}, s\right) d s+g\left(X_{\tau}\right)
$$

for suitable functions f, g and a.s. finite stopping time $\tau<\infty$.

Aim: Estimate the path functional

$$
\psi(x, t)=\mathbb{E}\left[e^{-W(X)}\right]
$$

Set-up: controlled ("nonequilibrium") diffusion process

Now given a controlled diffusion process $X^{u}=\left(X_{s}^{u}\right)_{s \geq 0}$,

$$
d X_{s}^{u}=\left(b\left(X_{s}^{u}, s\right)+\sigma\left(X_{s}^{u}\right) u_{s}\right) d s+\sigma\left(X_{s}^{u}\right) d B_{s}, \quad X_{t}^{u}=x
$$

and a probability $Q \ll P$ on $C([0, \infty))$ with likelihood ratio

$$
\varphi\left(X^{u}\right)=\left.\frac{d Q}{d P}\right|_{\mathcal{F}_{\tau}}=\exp \left(-\int_{t}^{\tau} u_{s} \cdot d B_{s}-\frac{1}{2} \int_{t}^{\tau}\left|u_{s}\right|^{2} d s\right) .
$$

Now: Estimate the reweigthed path functional

$$
\mathbb{E}\left[e^{-W(X)}\right]=\mathbb{E}\left[e^{-W\left(X^{u}\right)}\left(\varphi\left(X^{u}\right)\right)^{-1}\right]
$$

Variational characterization of free energies, cont'd

Theorem (H, 2012/2017)
Technical details aside, let u^{*} be a minimiser of the cost functional

$$
J(u)=\mathbb{E}\left[W\left(X^{u}\right)+\frac{1}{2} \int_{t}^{\tau}\left|u_{s}\right|^{2} d s\right]
$$

under the controlled dynamics

$$
d X_{s}^{u}=\left(b\left(X_{s}^{u}, s\right)+\sigma\left(X_{s}^{u}\right) u_{s}\right) d s+\sigma\left(X_{s}^{u}\right) d B_{s}, \quad X_{t}^{u}=x
$$

The minimiser is unique with $J\left(u^{*}\right)=-\log \psi(x, t)$. Moreover,

$$
\left.\psi(x, t)=e^{-W\left(X^{u^{*}}\right)}\left(\varphi\left(X^{u^{*}}\right)\right)^{-1} \quad \text { (a.s. }\right) .
$$

Illustrative example, cont'd

- Exit problem: $f=\alpha, g=0, \tau=\tau_{C}$:

$$
J\left(u^{*}\right)=\min _{u} \mathbb{E}\left[\alpha \tau_{C}^{u}+\frac{1}{4 \epsilon} \int_{0}^{\tau_{C}^{u}}\left|u_{s}\right|^{2} d s\right],
$$

under the tilted dynamics

$$
d X_{t}^{u}=\left(u_{t}-\nabla V\left(X_{t}^{u}\right)\right) d t+\sqrt{2 \epsilon} d B_{t}
$$

- Optimally tilted potential

$$
U^{*}(x, t)=V(x)-u_{t}^{*} x
$$

with stationary feedback $u_{t}^{*}=c\left(X_{t}^{u^{*}}\right)$.

Sketch of proof: Fleming's log transformation

By the Feynman-Kac theorem,

$$
\psi(x, t)=\mathbb{E}\left[\exp \left(-\int_{t}^{\tau} f\left(X_{t}, t\right) d t-g\left(X_{\tau}\right)\right) \mid X_{t}=x\right]
$$

solves the linear parabolic BVP on $\Omega \subset[0, \infty) \times \mathbb{R}^{n}$

$$
(\mathcal{A}-f) \psi=0,\left.\quad \psi\right|_{\partial \Omega_{+}}=\exp (-g) \quad \text { with } \quad \mathcal{A}=\frac{\partial}{\partial t}-\mathcal{L}
$$

The corresponding semilinear BVP for $F=-\log \psi$ reads

$$
\mathcal{A} F-\frac{1}{2}|\nabla F|_{a}^{2}+f=0,\left.\quad F\right|_{\partial \Omega_{+}}=g \quad \text { with } \quad a=\sigma \sigma^{T}
$$

Sketch of proof, cont'd

The semilinear Hamilton-Jacobi-Bellmann PDE

$$
\mathcal{A} F-\frac{1}{2}|\nabla F|_{a}^{2}+f=0,\left.\quad F\right|_{\partial \Omega_{+}}=g \quad\left(a=\sigma \sigma^{T}\right)
$$

is the dynamic programming equation for our stochastic control problem; it solution is the value function

$$
F(x, t)=\min \left\{J(u): X_{t}^{u}=x\right\}
$$

If $F \in C^{2,1}$ the optimal control has gradient form, i.e.

$$
u_{t}^{*}=-\sigma\left(X_{t}^{u^{*}}\right)^{T} \nabla F\left(X_{t}^{u^{*}}, t\right),
$$

Generalizations: degenerate diffusions, Markov chains,

Importance sampting of rare events

Duality of estimation and control

Least-squares Monte Carlo approach

From dynamic programming to a pair of SDE

Let $\Omega \subset[0, T] \times \mathbb{R}^{n}$ be bounded. The semilinear HJB equation

$$
\frac{\partial F}{\partial t}+\mathcal{L} F+h\left(x, F, \sigma^{T} \nabla F\right)=0,\left.F\right|_{\partial \Omega_{+}}=g
$$

is equivalent to the uncoupled forward-backward SDE

$$
\begin{aligned}
& d X_{s}=b\left(X_{s}, s\right) d s+\sigma\left(X_{s}\right) d B_{s}, X_{t}=x \\
& d Y_{s}=-h\left(X_{s}, Y_{s}, Z_{s}\right) d s+Z_{s} \cdot d B_{s}, \quad Y_{\tau}=g\left(X_{\tau}\right)
\end{aligned}
$$

where $t \leq s \leq \tau \leq T$ and

$$
Y_{s}=F\left(X_{s}, s\right), \quad Z_{s}=\sigma\left(X_{s}\right)^{T} \nabla F\left(X_{s}, s\right) .
$$

Formal derivation: Itô's Lemma

Some remarks

- The solution of the forward-backward SDE (FBSDE)

$$
\begin{aligned}
& d X_{s}=b\left(X_{s}, s\right) d s+\sigma\left(X_{s}\right) d B_{s}, X_{t}=x \\
& d Y_{s}=-h\left(X_{s}, Y_{s}, Z_{s}\right) d s+Z_{s} \cdot d B_{s}, \quad Y_{\tau}=g\left(X_{\tau}\right)
\end{aligned}
$$

is a triplet (X, Y, Z) where $\left(Y_{s}, Z_{s}\right)$ is adapted to $\left(X_{u}\right)_{u \in[t, s]}$.

- Hence $Y_{t}=F(x, t)$ is a deterministic function of the initial data (x, t), and Z_{t} controls this property.

- The BSDE is not an SDE with time reversed; e.g. for $h \equiv 0$ and $Y_{T}=X_{T}$, the pair $\left(Y_{s}, Z_{s}\right) \equiv\left(X_{T}, 0\right)$ satisfies the SDE $d Y_{s}=Z_{s} \cdot d B_{s}$, but it is not adapted.

Numerical discretisation of FBSDE

The FBSDE is decoupled and an explicit scheme can be based on

$$
\begin{aligned}
& \hat{X}_{n+1}=\hat{X}_{n}+\Delta t b\left(\hat{X}_{n}, t_{n}\right)+\sqrt{\Delta t} \sigma\left(\hat{X}_{n}\right) \xi_{n+1} \\
& \hat{Y}_{n+1}=\hat{Y}_{n}-\Delta t h\left(\hat{X}_{n}, \hat{Y}_{n}, \hat{Z}_{n}\right)+\sqrt{\Delta t} \hat{Z}_{n} \cdot \xi_{n+1}
\end{aligned}
$$

Since \hat{Y}_{n} is adapted we have $\hat{Y}_{n}=\mathbb{E}\left[\hat{Y}_{n} \mid \mathcal{F}_{n}\right]$ and thus

$$
\begin{aligned}
\hat{Y}_{n} & =\mathbb{E}\left[\hat{Y}_{n+1}+\Delta t h\left(\hat{X}_{n}, \hat{Y}_{n}, \hat{Z}_{n}\right) \mid \mathcal{F}_{n}\right] \\
& \approx \mathbb{E}\left[\hat{Y}_{n+1}+\Delta t h\left(\hat{X}_{n}, \hat{Y}_{n+1}, \hat{Z}_{n+1}\right) \mid \mathcal{F}_{n}\right]
\end{aligned}
$$

where $\mathcal{F}_{n}=\sigma\left(\hat{X}_{0}, \ldots, \hat{X}_{n}\right)$ using that \hat{Z}_{n} is independent of ξ_{n+1}.

Numerical discretisation of FBSDE, cont'd

The conditional expectation

$$
\hat{Y}_{n}:=\mathbb{E}\left[\hat{Y}_{n+1}+\Delta t h\left(\hat{X}_{n}, \hat{Y}_{n+1}, \hat{Z}_{n+1}\right) \mid \mathcal{F}_{n}\right]
$$

can be computed by least-squares:

$$
\mathbb{E}\left[S \mid \mathcal{F}_{n}\right]=\underset{Y \in L^{2}, \mathcal{F}_{n} \text {-measurable }}{\operatorname{argmin}} \mathbb{E}\left[|Y-S|^{2}\right] .
$$

Specifically,

$$
\hat{Y}_{n} \approx \underset{Y}{\operatorname{argmin}} \frac{1}{M} \sum_{m=1}^{M}\left|Y-\hat{Y}_{n+1}^{(m)}-\Delta t h\left(\hat{X}_{n}^{(m)}, \hat{Y}_{n+1}^{(m)}, \hat{Z}_{n+1}^{(m)}\right)\right|^{2},
$$

where $Y=Y_{K}\left(\hat{X}_{n}\right)$ may be a DNN, a Galerkin approximation, etc.

More remarks

- The scheme is strongly convergent of order $1 / 2$ in $\Delta t \rightarrow 0$ as $M, K \rightarrow \infty$ (M sample size, K no. of ansatz fcts.).
- A (fictitious) zero-variance change of measure is given by

$$
\left.\frac{d Q}{d P}\right|_{\mathcal{F}_{\tau}}=\exp \left(\int_{0}^{\tau} Z_{s} \cdot d B_{s}^{u}+\frac{1}{2} \int_{0}^{\tau}\left|Z_{s}\right|^{2} d s\right)
$$

for $\tau \leq T$ and the discretisation bias can be further reduced by using importance sampling.

- Under mild assumptions, the variance of the importance sampling estimator is no worse than for crude MC.
- Generalisations include unbounded \& random τ, singular terminal condition, least-squares $\mathrm{w} /$ change of drift.

Numerical illustration

Example I: hitting probabilities

Probability of hitting the set $C \subset \mathbb{R}$ before time T :

$$
-\log \mathbb{P}(\tau \leq T)=\min _{u} \mathbb{E}\left[\frac{1}{4} \int_{0}^{\tau \wedge T}\left|u_{t}\right|^{2} d t-\log \mathbf{1}_{\partial C}\left(X_{\tau \wedge T}^{u}\right)\right]
$$

with τ denoting the first hitting time of C under the dynamics

$$
d X_{t}^{u}=\left(u_{t}-\nabla V\left(X_{t}^{u}\right)\right) d t+\sqrt{2 \epsilon} d B_{t}
$$

Example I, cont'd

Probability of hitting $C \subset \mathbb{R}$ before time T, starting from $x=-1$:

$$
-\log \mathbb{P}(\tau \leq T)=\min _{u} \mathbb{E}\left[\frac{1}{4} \int_{0}^{\tau \wedge T}\left|u_{t}\right|^{2} d t-\log \mathbf{1}_{\partial C}\left(X_{\tau \wedge T}^{u}\right)\right]
$$

(BSDE with singular terminal condition and random stopping time)

Simulation parameters	$F_{r e f}^{\epsilon}(0, x)$	$\bar{F}^{\epsilon}(0, x)$	Var
$K=8, M=300, T=5, \Delta t=10^{-3}, \epsilon=1$	0.3949	0.3748	10^{-3}
$K=5, M=300, T=1, \Delta t=10^{-3}, \epsilon=1$	1.7450	1.6446	0.0248
$K=5, M=400, T=1, \Delta t=10^{-4}, \epsilon=0.6$	4.3030	4.5779	10^{-3}
$K=6, M=450, T=1, \Delta t=10^{-4}, \epsilon=0.5$	4.5793	4.6044	$5 \cdot 10^{-4}$

with K the number of Gaussians and M the number of realisations of the forward SDE.

Example II: High-dimensional PDE

First exit time of a Brownian motion from an n-sphere of radius r :

$$
\tau=\inf \left\{t>0: x+B_{t} \notin S_{r}^{n}\right\}
$$

Cumulant generating function of first exit time satisfies

$$
-\log \mathbb{E}[\exp (-\alpha \tau)]=\min _{u} \mathbb{E}\left[\alpha \tau^{u}+\frac{1}{2} \int_{0}^{\tau^{u}}\left|u_{t}\right|^{2} d t\right]
$$

- BSDE on random time horizon with homogeneous terminal condition
- mean first exit time $\mathbb{E}[\tau]=\frac{r^{2}-|x|^{2}}{n}$
- Least-squares $\mathrm{MC} w / K=3, M \sim 10^{2}$

	$n=3$	$n=10$	$n=100$	$n=1000$
exact	1.00	1.00	1.00	1.00
CMC	0.98	0.99	1.08	1.04
LSMC	0.99	1.01	0.96	0.98

Conclusions \& outlook

- Adaptive importance sampling scheme based on dual variational formulation; resulting control problem features short trajectories with minimum variance estimators.
- Variational problem boils down to an uncoupled FBSDE with only one additional spatial dimension.
- Error analysis for unbounded stopping time \& singular terminal condition is open, least-squares algorithm requires some fine-tuning (ansatz functions, change of drift, ...).
- Clever choice of ansatz functions should be combined with dimension reduction (cf. results for slow-fast systems).

Thank you for your attention!

Acknowledgement:
Ralf Banisch
Omar Kebiri
Lara Neurither
Jannes Quer
Lorenz Richter
Christof Schütte
Wei Zhang

German Science Foundation (DFG) BTU Graduate Research School (BTU-GRS)

