

From Quantum Entanglement to Model Reduction

Mazen Ali

Institute for Numerical Mathematics UIm University

26th October 2018

Smoothness and Sparsity

PDE model: $u \in \mathcal{V}$

$$F(u, Du, \ldots, D^n u, x) = 0, \quad x \in \mathbb{R}^d.$$

Numerical approximation: $u_h \in \mathcal{V}_h$

$$F_h(u_h, D_h u, \ldots, D_h^n u, x) = 0, \quad x \in \mathbb{R}^d.$$

Optimal rates for $||u - u_h||_{\mathcal{V}}$?

 $\mathcal{V} \in \{B^s, W^s, ...\}, \mathcal{V}_h \in \{\text{splines, wavelets, } ...\} \Leftrightarrow^1 \|u - u_h\|_{\mathcal{V}} = \mathcal{O}(h^{s/d}).$ Low-Rank approximation:

$$u \approx u_r = \sum_{k=1}^r v_k^1 \otimes \cdots \otimes v_k^d$$

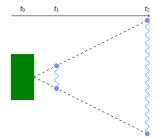
 $\mathcal{V} \in \{B^s, W^s, ...\} \Rightarrow^2 \|u - u_h\|_{\mathcal{V}} = \mathcal{O}(r^{-s/d}).$

¹DeVore: Nonlinear Approximation (1998).

²Schneider, Uschmajew: Approximation Rates for the Hierarchical Tensor Format in Periodic Sobolev Spaces (2014).

Quantum Entanglement

First mention in EPR³ (EPR Paradox).



Mathematical description: $\psi \in \mathcal{V}_1 \otimes \mathcal{V}_2$

$$\psi = \sum_{k=1}^{\infty} \sigma_k \mathbf{v}_k \otimes \mathbf{w}_k, \quad |\{k \in \mathbb{N} : \sigma_k > \mathbf{0}\}| > 1.$$

³Einstein, Podolsky, Rosen: Can Quantum-Mechanical Description of Physical Reality be Considered Complete? (1935).

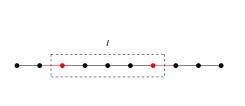
Entropy

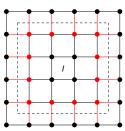
Quantifying information: state $ho \in \mathcal{T}(\mathcal{V})$,

$$\mathcal{S}(
ho) = \operatorname{tr}[
ho \log
ho] = \mathbb{E}[\log
ho] = \sum_{k=1}^{\infty} \lambda_k \log(\lambda_k) \quad (Von-Neumann \; Entropy).$$

Area Laws⁴:

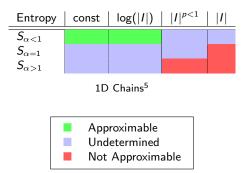
 $S(\rho_I) = \mathcal{O}(|\partial I|).$





⁴Eisert, Cramer, Plenio: Area Laws for the Entanglement Entropy - a Review (2010).

Approximability



⁵Schuch, Wolf, Verstraete, Cirac: Entropy Scaling and Simulability by Matrix Product States (2008).

Local Interaction Systems

Mission

Operator structure \Rightarrow Area Law in continuous systems

NNI systems:

$$H=\sum_{I\subset X}H_I.$$

Properties:

- gap,
- local support of H_I ,
- finite interaction strength.

Outlook: long-range interactions, exponentially decaying correlations.

Importance of Spectrum

$\mathsf{Can}\ \mathsf{show}^{\mathsf{6}}$

Theorem

f approximable with rate α and Bu = f (separable B) \Rightarrow u approximable with rate $\tilde{\alpha} \approx \alpha$.

Ingredients:

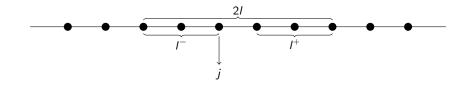
- Separable eigenvectors $B \Rightarrow$ separable eigenvectors B^{-1} .
- Exponential sum approximation of $\sigma(B^{-1})$.
- Constant depends only on coercivity (\sim gap).

Conjecture

Spectrum separability \Rightarrow separability of general solutions.

⁶Dahmen, DeVore, Grasedyck, Süli: Tensor-Sparsity of Solutions of High-Dimensional Elliptic Partial Differential Equations (2015).

Area Law 1D Spin Systems⁸



 $P_0 \approx O_B(2I)O_L(1,j)O_R(j+1,d).$

By Lindblad-Uhlmann⁷

 $S(2I||I^- \otimes I^+) \ge S(O_B[2I]||O_B[I^- \otimes I^+]) \ge \mathbb{E}[O_B] + S(1,j).$ $\Rightarrow 0 \le S(2I) \le 2S_I - \mathbb{E}[O_B] - S(1,j) \le [(\max S)I - \log(I)I] - S(1,j).$

⁷Lindblad: Completely Positive Maps and Entropy Inequalities (1974).

⁸Hastings: An Area Law for One Dimensional Quantum Systems (2018).

Finite Entropy

- Most states have infinite entropy 9.
- Physically meaningful states have finite entropy.

Lemma (Decay Rate)

If $\sigma_k^{\prime}(\psi) \lesssim k^{-p}$ for p > 1/2, then $S(\rho_l) < \infty$.

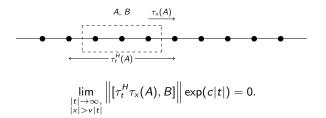
Lemma (Finite Energy Gibbs State)

If $E := tr(\rho H) < \infty$ and $exp(-\beta H) \in \mathcal{T}(V)$ for some $\beta > 0$, then $S(\rho_l) < \infty$.

⁹Wehrl: General Properties of Entropy (1978).

Finite Speed Propagation

Lieb-Robinson bound(s) ¹⁰



$$H=H_L+H_B+H_R,\; ilde{H}^0_{L/B/R}=\int_{-\infty}^{\infty} au_t^H\left(H_{L/B/R}
ight)W_l(t)dt,\; ilde{H}^0_{L/B/R}[\psi_0]pprox 0.$$

Lemma/Conjecture

If H is local with finite interaction strength, then $\exists O_L, O_B, O_R$

$$\|O_B O_L O_R - P_0\| \lesssim \exp(-cl).$$

¹⁰Lieb, Robinson: The Finite Group Velocity of Quantum Spin Systems (1972).

Summary and Outlook

- Entropy measures promising for quantifying reducibility.
- Area Laws describe systems breaking c.o.d.
- Many challenges remain:
 - Area Laws for continuous systems.
 - The right entropy measure.
 - Multi-dimensional Area Laws/Non-MPS systems.

"Before I came here I was confused about this subject. Having listened to your lecture I am still confused. But on a higher level."

Attributed to Enrico Fermi (29 Sep. 1901 - 28 Nov. 1954)