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Stochastic Differential Equations

O Stochastic differential equation (SDE) on a domain X:

dXt = b(Xt)dt + O'(Xt)d W[.
O Evolution of expectations: for f € L>°, what is fy(x) = E*[f(X;)]?
O Solution is provided by backward Kolmogorov equation:

of; 1
87; —b- Vft + ia . szt = ,Cft

o If aunique invariant density p exists, £ can be treated as an operator on LIZ,
i.e. Hilbert space methods can be used.
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Analysis of the Generator

Generator £ provides access to rich information about the system:

O Spectral analysis, identification of metastable sets based on eigenpairs.
o System identification, model reduction, control, transition rates, ...
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Potential Energy and Metastable States 2d Diffusion System
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Galerkin Projection of the Generator
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Generator Approximation (gEDMD)

0 Choose finite-dimensional V C Lf), basis ) = [, ..., 9]
o Galerkin projection Ly = Py L Py, such that

(6, L), = (¢, Lyd), Vo, ¢ €V.
O Matrix representation on V:

Lo=GTA Gy= (i, ), = EX[i(A)()]
Aj = (Wi, L) , = EP[i(Xs) Lo X5)]

Klus, Nuske, Peitz, et al, Physica D (2020)
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Generator Approximation (gEDMD)

O If we have snapshots X5, 1 < [ < m from long, stationary realizations of
the dynamics, we can approximate:

1 & RS
G,-/- ~ - Z ¢i(X/)1/Jj(X/), A,‘/' ~ m Z wl(){/)ﬁwj(‘)(/)

=1 (=1

O Data-driven approximation (with X = [}, ..., X))
Ly = (W)WX)) (WX LW (X)T).

Klus, Naske, Peitz, et al, Physica D (2020)
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Reproducing Kernel Hilbert Spaces
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Definition RKHS

Definition
Let X be an open domain and H a space of continuous functions f: X — R.

Then H is called a reproducing kernel Hilbert space (RKHS) with inner product
(-, -)y ifafunction k: X x X — R exists such that

1. H = span{k(x, ), x € X},
2. (f, k(x,-))y = f(x)forall f € H.

Wendland, Scattered Data Approximation (2005)
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Derivative Reproducing Property

The Reproducing Property can be extended to derivatives if the kernel is smooth:

Theorem

Letk(-,-) € C*(X x X) be a positive semi-definite function on an open set.
Then all functions inH are C* and we have for all || < k:

D*f(x) = (D"k(x,"), A »

where the derivative acts on the first argument of k.

Wendland, Scattered Data Approximation (2005)
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Data-driven Approximation on RKHS
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Rank-one Operators

Let x € X and v a multi-index. Consider a rank-one operator on the RKHS H:
Ty'¢ = (D%k(x;-), Prg k(x;-).
With derivative reproducing property, we verify that for ¢, ¢’ € H:

(T2, &)y = D*6(x) (k(x,-), ¢ )y = DG () (x).
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Linear Differential Operators

Let T¢ =, wa D¢ bealinear differential operator and 1« a measure on X.
Consider a formal operator on H:

m¢:/§§<ZWa(X)Dak(X7')7 ¢> k(Xv')dN(X)‘
«@ H

By the same trick as on the previous slide, we find for all ¢, ¢" € H:
mqbv / T¢ X, ¢/>H d/‘L(X)
_ / To()8 () du(x) = (To, &),
X
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RKHS Galerkin Projection

Theorem
Assume thatH C D(T) C Lﬁ, and that for all relevant ov:

/X!Wa(X)HDa/((Xa el k(x, )|z dpu(x) < oo,
Then, forall ¢, ¢’ € H,

(To, &), = (Tud, ¢')y -

Note: this applies in particular to the backward Kolmogorov operator
Lo=1 > aj(x) Dt p(x) + > bi(x)D%¢(x), and 1 = p.

Klus, Niske, and Hamzi, Entropy (2020)
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Data-driven Approximation

o If v is a probability measure, we can use data { A} 7, to approximate the
integral in 7p.

O By further restricting the problem to linear span of k(X -), we get back to
finite-dimensional problems.

O Counterparts of the standard Galerkin matrices are:
Gl = k(X Xy), A = (Th)(X, X).

Klus, Niiske, and Hamzi, Entropy (2020)
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Application to Quantum Systems
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Schrodinger Operators

O The above also applies to Schrodinger operators (1. uniform):

1 1 %,
Hw_—zAw+v¢_—ZZi:D Y+ Ve

o Hydrogenatom (X = R3, V = — L. m = 5000, Gaussian kernel):
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Symmetries of Quantum Systems

O Quantum systems often require (anti-)symmetry of the wavefunction 1. If
X = R (e.g. N particles in d-dim. space), and Sy is the permutation
group, we need for all permutations 7 € Sy:

B0 ) = DT (H, )
or (X, ., ) = sgn(m)b((x, ., ).

O Can these symmetries be built into data-driven approximations?
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Anti-symmetric Kernels

Lemma

Letk: X x X — R bea kernel, andX C RY. We define an antisymmetric
functionk;: X x X — R by

2(x, ) dﬁ > > san(m) sgn( Yk (w(x), 7' (x')).

TESy ™' ESy

Then k, is a symmetric positive semi-definite kernel and generates an RKHS of
anti-symmetric functions.

Klus, Gelf3, Niske, and Noé, Machine Learning: Science and Technology (2021)
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Reducing the Computational Effort

Lemma

A kernel k is called permutation-invariant if k(x, x') = k(m(x), m(x")) for all
m € Sy. If this condition holds, we have:

ka(x, x') = % zsj sgn(m)k (x(x), X') = % Z; sgn(m)k(x, 7(x')).

For the Gaussian kernel with bandwidth o, we obtain:

/2 /2

(1) (=)
e 201 ... € 202
1
/
k(ox) = 2| .
g g —p)?
e ! ... e 10!

Klus, Gelf3, Niske, and Noé, Machine Learning: Science and Technology (2021)
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Particle in a Box

O Particle in a box system:
X=RY V(x)=0x¢€[0,7]% V(x)= cootherwise.

O Analytical eigenfunctions v, , (X1, X) = %sin(lm) sin(hx,) are either
symmetric or anti-symmetric.

O Kernel-discretization with anti-symmetrized Gaussian kernel picks up
anti-symmetric eigenpairs:
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Klus, Gelf3, Niiske, and Noé, Machine Learning: Science and Technology (2021)
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