

PADERBORN UNIVERSITY

KERNEL-BASED

APPROXIMATION OF THE

KOOPMAN GENERATOR AND

SCHRÖDINGER OPERATOR

SDEs and Generators

Galerkin Projection of the Generator

Reproducing Kernel Hilbert Spaces

Data-driven Approximation on RKHS

Application to Quantum Systems

Stochastic Differential Equations

 \circ Stochastic differential equation (SDE) on a domain X:

$$dX_t = b(X_t) dt + \sigma(X_t) dW_t.$$

- O Evolution of expectations: for $f \in L^{\infty}$, what is $f_t(x) = \mathbb{E}^x[f(X_t)]$?
- Solution is provided by backward Kolmogorov equation:

$$\frac{\partial f_t}{\partial t} = b \cdot \nabla f_t + \frac{1}{2}a : \nabla^2 f_t := \mathcal{L}f_t.$$

• If a unique invariant density ρ exists, \mathcal{L} can be treated as an operator on \mathcal{L}^2_{ρ} , i.e. Hilbert space methods can be used.

Analysis of the Generator

Generator \mathcal{L} provides access to rich information about the system:

- Spectral analysis, identification of metastable sets based on eigenpairs.
- O System identification, model reduction, control, transition rates, ...

Potential Energy and Metastable States 2d Diffusion System

SDFs and Generators

Galerkin Projection of the Generator

Reproducing Kernel Hilbert Spaces

Data-driven Approximation on RKHS

Application to Quantum Systems

Generator Approximation (gEDMD)

- o Choose finite-dimensional $\mathbb{V} \subset L^2_{\rho}$, basis $\psi = [\psi_1, \dots, \psi_n]^T$.
- o Galerkin projection $\mathcal{L}_{\mathbb{V}}=\mathcal{P}_{\mathbb{V}}\mathcal{L}\mathcal{P}_{\mathbb{V}}$, such that

$$\left\langle \phi,\, \mathcal{L}\phi'\right\rangle_{\rho} = \left\langle \phi,\, \mathcal{L}_{\mathbb{V}}\phi'\right\rangle_{\rho} \quad \forall \phi,\, \phi' \in \mathbb{V}.$$

Matrix representation on V:

$$\begin{split} \mathbf{L}_{\mathbb{V}} &= \mathbf{G}^{-1}\mathbf{A}, \qquad \mathbf{G}_{ij} = \left\langle \psi_i, \ \psi_j \right\rangle_{\rho} = \mathbb{E}^{\rho}[\psi_i(\mathcal{X}_s)\psi_j(\mathcal{X}_s)], \\ \mathbf{A}_{ij} &= \left\langle \psi_i, \ \mathcal{L}\psi_j \right\rangle_{\rho} = \mathbb{E}^{\rho}[\psi_i(\mathcal{X}_s)\mathcal{L}\psi_j(\mathcal{X}_s)] \end{split}$$

Klus, Nüske, Peitz, et al, Physica D (2020)

Generator Approximation (gEDMD)

O If we have snapshots \mathcal{X}_{s_l} , $1 \le l \le m$ from long, stationary realizations of the dynamics, we can approximate:

$$\mathbf{G}_{ij} \approx \frac{1}{m} \sum_{l=1}^{m} \psi_i(\mathcal{X}_l) \psi_j(\mathcal{X}_l), \quad \mathbf{A}_{ij} \approx \frac{1}{m} \sum_{l=1}^{m} \psi_i(\mathcal{X}_l) \mathcal{L} \psi_j(\mathcal{X}_l).$$

O Data-driven approximation (with $X = [X_1, \dots, X_m]$):

$$\hat{\boldsymbol{L}}_{\mathbb{V}} = (\boldsymbol{\Psi}(\boldsymbol{X})\boldsymbol{\Psi}(\boldsymbol{X})^T)^{-1}((\boldsymbol{\Psi}(\boldsymbol{X})\mathcal{L}\boldsymbol{\Psi}(\boldsymbol{X})^T).$$

Klus, Nüske, Peitz, et al, Physica D (2020)

SDEs and Generators

Galerkin Projection of the Generator

Reproducing Kernel Hilbert Spaces

Data-driven Approximation on RKHS

Application to Quantum Systems

Definition RKHS

Definition

Let $\mathbb X$ be an open domain and $\mathbb H$ a space of continuous functions $f\colon \mathbb X\to \mathbb R$. Then $\mathbb H$ is called a *reproducing kernel Hilbert space* (RKHS) with inner product $\langle\cdot,\cdot\rangle_{\mathbb H}$ if a function $k\colon \mathbb X\times \mathbb X\to \mathbb R$ exists such that

- 1. $\mathbb{H} = \overline{\operatorname{span}\{k(x,\cdot), x \in \mathbb{X}\}}$,
- **2**. $\langle f, k(x, \cdot) \rangle_{\mathbb{H}} = f(x)$ for all $f \in \mathbb{H}$.

Wendland, Scattered Data Approximation (2005)

Derivative Reproducing Property

The Reproducing Property can be extended to derivatives if the kernel is smooth:

Theorem

Let $k(\cdot, \cdot) \in C^{2k}(\mathbb{X} \times \mathbb{X})$ be a positive semi-definite function on an open set. Then all functions in \mathbb{H} are C^k and we have for all $|\alpha| \leq k$:

$$D^{\alpha}f(x)=\langle D^{\alpha}k(x,\cdot),\,f\rangle_{\mathbb{H}}\,,$$

where the derivative acts on the first argument of k.

Wendland, Scattered Data Approximation (2005)

RKHS for DS

SDEs and Generators

Galerkin Projection of the Generator

Reproducing Kernel Hilbert Spaces

Data-driven Approximation on RKHS

Application to Quantum Systems

Let $x \in \mathbb{X}$ and α a multi-index. Consider a rank-one operator on the RKHS \mathbb{H} :

$$\mathcal{T}_{\mathsf{x}}^{\alpha}\phi:=\langle \mathsf{D}^{\alpha}\mathsf{k}(\mathsf{x},\cdot),\,\phi\rangle_{\mathbb{H}}\,\mathsf{k}(\mathsf{x},\cdot).$$

With derivative reproducing property, we verify that for $\phi, \phi' \in \mathbb{H}$:

$$\langle \mathcal{T}_{\mathsf{x}}^{\alpha} \phi, \, \phi' \rangle_{\mathbb{H}} = D^{\alpha} \phi(\mathsf{x}) \, \langle \mathit{k}(\mathsf{x}, \cdot), \, \phi' \rangle_{\mathbb{H}} = D^{\alpha} \phi(\mathsf{x}) \phi'(\mathsf{x}).$$

Linear Differential Operators

Let $\mathcal{T}\phi=\sum_{\alpha}w_{\alpha}D^{\alpha}\phi$ be a linear differential operator and μ a measure on \mathbb{X} . Consider a formal operator on \mathbb{H} :

$$\mathcal{T}_{\mathbb{H}}\phi = \int_{\mathbb{X}} \left\langle \sum_{\alpha} w_{\alpha}(x) D^{\alpha} k(x,\cdot), \phi \right\rangle_{\mathbb{H}} k(x,\cdot) d\mu(x).$$

By the same trick as on the previous slide, we find for all $\phi, \phi' \in \mathbb{H}$:

$$\begin{split} \left\langle \mathcal{T}_{\mathbb{H}} \phi, \, \phi' \right\rangle_{\mathbb{H}} &= \int_{\mathbb{X}} \mathcal{T} \phi(\mathbf{x}) \, \left\langle \mathbf{k}(\mathbf{x}, \cdot, \, \phi') \right\rangle_{\mathbb{H}} \, \mathrm{d} \mu(\mathbf{x}) \\ &= \int_{\mathbb{X}} \mathcal{T} \phi(\mathbf{x}) \phi'(\mathbf{x}) \, \mathrm{d} \mu(\mathbf{x}) = \left\langle \mathcal{T} \phi, \, \phi' \right\rangle_{\mu}. \end{split}$$

RKHS Galerkin Projection

Theorem

Assume that $\mathbb{H} \subset \mathcal{D}(\mathcal{T}) \subset L^2_\mu$, and that for all relevant α :

$$\int_{\mathbb{X}} |w_{\alpha}(x)| \|D^{\alpha}k(x,\cdot)\|_{\mathbb{H}} \|k(x,\cdot)\|_{\mathbb{H}} d\mu(x) < \infty,$$

Then, for all $\phi, \phi' \in \mathbb{H}$ *,*

$$\langle \mathcal{T}\phi, \, \phi' \rangle_{\mu} = \langle \mathcal{T}_{\mathbb{H}}\phi, \, \phi' \rangle_{\mathbb{H}}.$$

Note: this applies in particular to the backward Kolmogorov operator $\mathcal{L}\phi = \frac{1}{2} \sum_{i,j} a_{ij}(x) D^{e_i + e_j} \phi(x) + \sum_i b_i(x) D^{e_i} \phi(x)$, and $\mu = \rho$.

Klus, Nüske, and Hamzi, Entropy (2020)

Data-driven Approximation

- If μ is a probability measure, we can use data $\{\mathcal{X}_l\}_{l=1}^m$ to approximate the integral in $\mathcal{T}_{\mathbb{H}}$.
- O By further restricting the problem to linear span of $k(\mathcal{X}_l, \cdot)$, we get back to finite-dimensional problems.
- O Counterparts of the standard Galerkin matrices are:

$$\mathbf{G}_{rs}^k = k(\mathcal{X}_r, \mathcal{X}_s), \qquad \mathbf{A}_{rs}^k = (\mathcal{T}k)(\mathcal{X}_r, \mathcal{X}_s).$$

Klus, Nüske, and Hamzi, Entropy (2020)

SDEs and Generators

Galerkin Projection of the Generator

Reproducing Kernel Hilbert Spaces

Data-driven Approximation on RKHS

Application to Quantum Systems

Schrödinger Operators

 \circ The above also applies to Schrödinger operators (μ uniform):

$$\mathcal{H}\psi = -rac{1}{2}\Delta\Psi + V\psi = -rac{1}{2}\sum_{i}D^{2e_{i}}\psi + V\psi.$$

O Hydrogen atom ($\mathbb{X} = \mathbb{R}^3$, $V = -\frac{1}{\|x\|}$, m = 5000, Gaussian kernel):

Symmetries of Quantum Systems

O Quantum systems often require (anti-)symmetry of the wavefunction ψ . If $\mathbb{X} = \mathbb{R}^{dN}$ (e.g. N particles in d-dim. space), and S_N is the permutation group, we need for all permutations $\pi \in S_N$:

$$\psi(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \psi(\pi(\mathbf{x}_1,\ldots,\mathbf{x}_N))$$

or $\psi(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \operatorname{sgn}(\pi)\psi(\pi(\mathbf{x}_1,\ldots,\mathbf{x}_N)).$

• Can these symmetries be built into data-driven approximations?

Anti-symmetric Kernels

Lemma

Let $k: \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ be a kernel, and $\mathbb{X} \subset \mathbb{R}^d$. We define an antisymmetric function $k_a: \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ by

$$k_{a}(x,x') = \frac{1}{d!^{2}} \sum_{\pi \in S_{d}} \sum_{\pi' \in S_{d}} \operatorname{sgn}(\pi) \operatorname{sgn}(\pi') k(\pi(x), \pi'(x')).$$

Then k_a is a symmetric positive semi-definite kernel and generates an RKHS of anti-symmetric functions.

Klus, Gelß, Nüske, and Noé, Machine Learning: Science and Technology (2021)

Reducing the Computational Effort

Lemma

A kernel k is called permutation-invariant if $k(x, x') = k(\pi(x), \pi(x'))$ for all $\pi \in S_d$. If this condition holds, we have:

$$k_{a}(x,x') = \frac{1}{d!} \sum_{\pi \in S_{d}} \operatorname{sgn}(\pi) k(\pi(x),x') = \frac{1}{d!} \sum_{\pi \in S_{d}} \operatorname{sgn}(\pi) k(x,\pi(x')).$$

For the Gaussian kernel with bandwidth σ , we obtain:

$$k_a(x, x') = rac{1}{d!} egin{array}{cccc} e^{-rac{(x_1 - x_1')^2}{2\sigma^2}} & \dots & e^{-rac{(x_1 - x_d')^2}{2\sigma^2}} \ dots & \ddots & dots \ e^{-rac{(x_1 - x_1')^2}{2\sigma^2}} & \dots & e^{-rac{(x_1 - x_d')^2}{2\sigma^2}} \end{array} \end{bmatrix}.$$

Klus, Gelß, Nüske, and Noé, Machine Learning: Science and Technology (2021)

Particle in a Box

- Particle in a box system:
 - $\mathbb{X} = \mathbb{R}^2$, V(x) = 0 $x \in [0, \pi]^2$; $V(x) = \infty$ otherwise.
- Analytical eigenfunctions $\psi_{l_1,l_2}(x_1,x_2)=\frac{2}{\pi}\sin(l_1x_1)\sin(l_2x_2)$ are either symmetric or anti-symmetric.
- Kernel-discretization with anti-symmetrized Gaussian kernel picks up anti-symmetric eigenpairs:

Klus, Gelß, Nüske, and Noé, Machine Learning: Science and Technology (2021) Feliks Nüske

Thanks

Thank you for your attention!

Joint work with: Stefan Klus (U Surrey), Sebastian Peitz (UPB), Boumediene Hamzi (Imperial), Patrick Gelß (FU Berlin), Frank Noé (FU Berlin)

Main Papers:

Klus, Nüske, Peitz, et al, Physica D: Nonlinear Phenomena, 406, 132416 (2020)

Klus, Nüske, and Hamzi, Entropy, 22 (7), 722 (2020)

Klus, Gelß, Nüske, and Noé, Machine Learning: Science and Technology, 2 (4), O45016 (2021)