* Determining pair interactions from structural data: An inverse problem in statistical mechanics

Martin Hanke

Johannes Gutenberg-Universität Institut für Mathematik

Berlin. Oct. 2018; MOANSI meeting
 W. Whes supported by TRR 146 (DFG)

Atomistic numerical simulation techniques of complex molecules in material science require advanced multilevel techniques.

One such technique, called coarse graining (CG), replaces (sub)molecular structures by single beads:

\leadsto

The simulation of the beads then requires the determination of effective pair potentials for the interaction of these beads.

Outline

- Setting of the problem
- The Henderson problem
- Iterative solution methods
- Newton-type iterative schemes

Setting of the problem

Statistical mechanics

Consider a huge ensemble of particles with (counting) density ρ_{0} in thermodynamical equilibrium
whose potential energy (structural Hamiltonian) is determined by a pair potential

$$
u: \mathbb{R}^{+} \rightarrow \mathbb{R}
$$

depending only on the distance of the interacting particles.

- the temperature T is sufficiently large and the (counting) density ρ_{0} is sufficiently small
- the pair potential is of Lennard-Jones type, i.e.,
- u decays fast enough as $r \rightarrow \infty$:

$$
|u(r)| \leq C r^{-\alpha}, \quad r \geq r_{0}, \quad C>0, \alpha>3
$$

- u diverges fast enough to $+\infty$ as $r \rightarrow 0$:

$$
u(r)>c r^{-\alpha}, \quad r \leq r_{0}, \quad c>0
$$

$$
u(r)=4 \epsilon\left(\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right)
$$

The statistical distribution of the particles in the full space \mathbb{R}^{3} (thermodynamical limit) is determined by the so-called Gibbs' measure.

It states that there exists a (translation and rotation invariant) pair-distribution function $\rho^{(2)}(x, y)$ and an associated radial distribution function (RDF)

$$
g(r)=\frac{1}{\rho_{0}^{2}} \rho^{(2)}\left(x, x^{\prime}\right), \quad\left|x-x^{\prime}\right|=r,
$$

such that

$$
N_{R}=\int_{|x|<R} \rho^{(2)}(0, x) \mathrm{d} x=4 \pi \rho_{0}^{2} \int_{0}^{R} g(r) r^{2} \mathrm{~d} r
$$

is the expected number of particles in a sphere of radius $R>0$ around a given particle.

Since

$$
N_{R}=4 \pi \rho_{0}^{2} \int_{0}^{R} g(r) r^{2} \mathrm{~d} r \quad \Leftrightarrow \quad g(r)=\frac{1}{\rho_{0}^{2}} \frac{1}{4 \pi r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r} N_{r}
$$

the radial distribution function can be obtained from numerical simulations by counting particles on spherical shells:

Radial distribution function

The RDF has the following properties:

- $g(r)-1 \in L^{1}\left(\mathbb{R}^{+} ; r^{2} \mathrm{~d} r\right)$
- $g(r)-1 \in L^{\infty}\left(\mathbb{R}^{+} ; r^{\alpha} \mathrm{d} r\right)$
- $c e^{-u(r)} \leq g(r) \leq C e^{-u(r)}$

Ruelle, 1969
Groeneveld, 1967; H., 2018
H., 2018

The Henderson Problem

The Henderson map

As we have seen, Lennard-Jones type pair potentials u yield a well-defined RDF g :

... the "Henderson map" F

For the determination of effective potentials the inverse problem

- Given $g=F(u) ; \quad$ determine u
is of interest

The Henderson problem

- Uniqueness: \rightsquigarrow Henderson, 1974

Frommer, H., 2018

- Existence: a hard-core potential solution is known to exist if

$$
\begin{aligned}
& g(r)=0, \quad 0<r<r_{1} \\
& g(r) \approx 1, \quad r>r_{1}
\end{aligned}
$$

Koralov, 2007

Iterative solution methods

To solve the inverse Henderson problem physical chemists often apply the Inverse Boltzmann Iteration (IBI),

$$
u_{n+1}=u_{n}+\frac{1}{\beta} \log \frac{F\left(u_{n}\right)}{g}, \quad n=0,1,2, \ldots
$$

starting, e.g., with the "potential of mean force", $u_{0}=-\frac{1}{\beta} \log g$.

Apparently:

- if $g=F\left(u^{\dagger}\right)$ ("attainability") then u^{\dagger} is a fixed point of this iteration
- if g fails to be attainable (due to noise, for example) then the iteration must diverge

Semiconvergence

In practice this scheme is fairly robust, but exhibits (slight) semiconvergence due to noise:

- here the error (unknown in practice!) is measured as

$$
\left\|u_{n}-u^{\dagger}\right\|_{g}^{2}:=\int_{0}^{\infty} g(r)\left(u_{n}-u^{\dagger}(r)\right)^{2} \mathrm{~d} r
$$

$$
u_{n+1}=\Phi\left(u_{n}\right)=u_{n}+\frac{1}{\beta} \log \frac{F\left(u_{n}\right)}{g}, \quad n=0,1,2, \ldots
$$

Qu: Will u_{n+1} be of Lennard-Jones type, if u_{n} is close to u^{\dagger}, i.e., does Φ map a neighborhood of u^{\dagger} onto some (other) neighborhood of u^{\dagger} ?

Ans: There are appropriate topologies such that the Henderson map and also Φ are locally differentiable. Accordingly, if $\left\|u-u^{\dagger}\right\|$ is small then $\Phi(u)$ will again be of Lennard-Jones type.
H., 2018

Convergence analysis (?)

$$
u_{n+1}=u_{n}+\frac{1}{\beta} \log \frac{F\left(u_{n}\right)}{g}, \quad n=0,1,2, \ldots
$$

Error analysis (formal) for the attainable situation:

$$
\begin{aligned}
\sqrt{g}\left(u_{n+1}-u^{\dagger}\right) & =\sqrt{g}\left(u_{n}-u^{\dagger}\right)+\frac{1}{\beta} \sqrt{g} \log \frac{F\left(u_{n}\right)}{g} \\
& \approx \sqrt{g}\left(u_{n}-u^{\dagger}\right)+\frac{1}{\beta} \sqrt{g} \frac{g}{F\left(u^{\dagger}\right)} \frac{F^{\prime}\left(u^{\dagger}\right)\left(u_{n}-u^{\dagger}\right)}{g}
\end{aligned}
$$

Convergence analysis (?)

$$
u_{n+1}=u_{n}+\frac{1}{\beta} \log \frac{F\left(u_{n}\right)}{g}, \quad n=0,1,2, \ldots
$$

Error analysis (formal) for the attainable situation:

$$
\begin{aligned}
\sqrt{g}\left(u_{n+1}-u^{\dagger}\right) & =\sqrt{g}\left(u_{n}-u^{\dagger}\right)+\frac{1}{\beta} \sqrt{g} \log \frac{F\left(u_{n}\right)}{g} \\
& \approx \sqrt{g}\left(u_{n}-u^{\dagger}\right)+\frac{1}{\beta} \sqrt{g} \frac{g}{F\left(u^{\dagger}\right)} \frac{F^{\prime}\left(u^{\dagger}\right)\left(u_{n}-u^{\dagger}\right)}{g} \\
& =\left(I+\frac{1}{\beta} \frac{1}{\sqrt{g}} F^{\prime}\left(u^{\dagger}\right) \frac{1}{\sqrt{g}}\right) \sqrt{g}\left(u_{n}-u^{\dagger}\right)
\end{aligned}
$$

Convergence analysis (?)

$$
u_{n+1}=u_{n}+\frac{1}{\beta} \log \frac{F\left(u_{n}\right)}{g}, \quad n=0,1,2, \ldots
$$

Error analysis (formal) for the attainable situation:

$$
\begin{aligned}
\sqrt{g}\left(u_{n+1}-u^{\dagger}\right) & =\sqrt{g}\left(u_{n}-u^{\dagger}\right)+\frac{1}{\beta} \sqrt{g} \log \frac{F\left(u_{n}\right)}{g} \\
& \approx \sqrt{g}\left(u_{n}-u^{\dagger}\right)+\frac{1}{\beta} \sqrt{g} \frac{g}{F\left(u^{\dagger}\right)} \frac{F^{\prime}\left(u^{\dagger}\right)\left(u_{n}-u^{\dagger}\right)}{g} \\
& =\left(I+\frac{1}{\beta} \frac{1}{\sqrt{g}} F^{\prime}\left(u^{\dagger}\right) \frac{1}{\sqrt{g}}\right) \sqrt{g}\left(u_{n}-u^{\dagger}\right)
\end{aligned}
$$

Attn: Note that $-F^{\prime}$ is a positive (unbounded) operator in L^{2}.

Newton-type iterative schemes

The derivative $F^{\prime}(u)$ of the Henderson map can be assembled from the joint 3 - and 4 -particle distributions of the ensemble.

The corresponding Newton scheme is known as Inverse Monte Carlo:

$$
u_{k+1}=u_{k}+F^{\prime}\left(u_{k}\right)^{-1}\left(g-F\left(u_{k}\right)\right)
$$

We propose a generalized Newton scheme, where the inverse of the Henderson map is approximated by the hypernetted chain integral equation

$$
u \approx U(g)=-\frac{1}{\beta} \log g+\frac{1}{\beta}(h-c)
$$

Here,

$$
h=g-1 \in L^{\infty}\left(\mathbb{R}^{+} ; r^{\alpha} \mathrm{d} r\right),
$$

and c is defined by the convolution integral ${ }^{\dagger}$

$$
c+\rho_{0} h * c=h .
$$

It can be shown that the convolution defines a Banach algebra in $L^{\infty}\left(\mathbb{R}^{+} ; r^{\alpha} \mathrm{d} r\right)$, and hence $c \in L^{\infty}\left(\mathbb{R}^{+} ; r^{\alpha} \mathrm{d} r\right)$ is well-defined provided that the structure factor

$$
S(\omega)=1+\rho_{0} \widehat{h}(\omega)
$$

is positive (Wiener Lemma).

$$
u \approx U(g)=-\frac{1}{\beta} \log g+\frac{1}{\beta}(h-c)
$$

It follows that

$$
F^{\prime}\left(u_{k}\right)^{-1} g^{\prime} \approx U^{\prime}(g) g^{\prime}=-\frac{1}{\beta} \frac{g^{\prime}}{g}+\frac{1}{\beta}\left(g^{\prime}-c^{\prime}\right)
$$

where $\varphi=g^{\prime}-c^{\prime}$ is given in Fourier space by

$$
\widehat{\varphi}=\rho_{0}^{2} \frac{2+\rho_{0} \widehat{h}}{\left(1+\rho_{0} \widehat{h}\right)^{2}} \widehat{h} \widehat{g^{\prime}}
$$

The corresponding inverse hypernetted chain iteration is defined as

$$
u_{k+1}=u_{k}+\frac{1}{\beta} \log \frac{g_{k}}{g}+\frac{\rho_{0}}{\beta} \varphi_{k}
$$

Lennard-Jones potential

$$
u=4 \varepsilon\left((\sigma / r)^{12}-(\sigma / r)^{6}\right)
$$

near the "triple point" (phase transition)
error history:

Open problems

- Uniqueness of potential
- Existence of potential
?
- Well-posedness of IBI \checkmark
- Convergence of IBI
?
- Stability/Regularization properties

