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The application

Atomistic numerical simulation techniques of complex molecules in
material science require advanced multilevel techniques.

One such technique, called coarse graining (CG), replaces
(sub)molecular structures by single beads:

 

The simulation of the beads then requires the determination of
effective pair potentials for the interaction of these beads.
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Setting of the problem
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Statistical mechanics

Consider a huge ensemble of particles with (counting) density ρ0 in
thermodynamical equilibrium

whose potential energy (structural Hamiltonian) is determined by a
pair potential

u : R+ → R

depending only on the distance of the interacting particles.
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Standing assumptions

the temperature T is sufficiently large and the (counting)
density ρ0 is sufficiently small

the pair potential is of Lennard-Jones type, i.e.,

u decays fast enough as r →∞ :

|u(r)| ≤ Cr−α, r ≥ r0, C > 0, α > 3

u diverges fast enough to +∞ as r → 0 :

u(r) > cr−α, r ≤ r0, c > 0

r0

u

u(r) = 4ε
((σ

r

)12 −
(σ
r

)6
)
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Radial distribution function

The statistical distribution of the particles in the full space R3

(thermodynamical limit) is determined by the so-called Gibbs’
measure.

It states that there exists a (translation and rotation invariant)
pair-distribution function ρ(2)(x , y) and an associated radial
distribution function (RDF)

g(r) =
1

ρ2
0

ρ(2)(x , x ′) , |x − x ′| = r ,

such that

NR =

∫
|x|<R

ρ(2)(0, x)dx = 4πρ2
0

∫ R

0

g(r) r2 dr

is the expected number of particles in a sphere of radius R > 0
around a given particle.
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Radial distribution function

Since

NR = 4πρ2
0

∫ R

0

g(r) r2 dr ⇔ g(r) =
1

ρ2
0

1

4πr2

d

dr
Nr ,

the radial distribution function can be obtained from numerical
simulations by counting particles on spherical shells:
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Radial distribution function
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The RDF has the following properties:

g(r)− 1 ∈ L1(R+; r2dr)

g(r)− 1 ∈ L∞(R+; rαdr)

ce−u(r) ≤ g(r) ≤ Ce−u(r)

Ruelle, 1969

Groeneveld, 1967; H., 2018

H., 2018
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The Henderson Problem
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The Henderson map

As we have seen, Lennard-Jones type pair potentials u yield a
well-defined RDF g :

F :

u

7→

g

. . . the “Henderson map” F
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The Henderson problem

F :

u

7→

g

For the determination of effective potentials the inverse problem

Given g = F (u); determine u

is of interest
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The Henderson problem

F :

u

7→

g

Uniqueness:  Henderson, 1974

Frommer, H., 2018

Existence: a hard-core potential solution is known to exist if

g(r) = 0, 0 < r < r1,

g(r) ≈ 1, r > r1

Koralov, 2007
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Iterative solution methods
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Inverse Boltzmann Iteration

To solve the inverse Henderson problem physical chemists often
apply the Inverse Boltzmann Iteration (IBI),

un+1 = un +
1

β
log

F (un)

g
, n = 0, 1, 2, . . . ,

starting, e.g., with the “potential of mean force”, u0 = − 1
β log g .

Apparently:

if g = F (u†) (“attainability”) then u† is a fixed point
of this iteration

if g fails to be attainable (due to noise, for example)
then the iteration must diverge

Martin Hanke (Mainz) An inverse problem in statistical mechanics



Semiconvergence

In practice this scheme is fairly robust, but exhibits (slight)
semiconvergence due to noise:
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here the error (unknown in practice!) is measured as

‖un − u†‖2
g :=

∫ ∞
0

g(r)
(
un − u†(r)

)2
dr
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Well-posedness of IBI

un+1 = Φ(un) = un +
1

β
log

F (un)

g
, n = 0, 1, 2, . . .

Qu: Will un+1 be of Lennard-Jones type, if un is close to u†, i.e.,
does Φ map a neighborhood of u† onto some (other)
neighborhood of u† ?

Ans: There are appropriate topologies such that the Henderson map
and also Φ are locally differentiable. Accordingly, if ‖u − u†‖
is small then Φ(u) will again be of Lennard-Jones type.

H., 2018
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Convergence analysis (?)

un+1 = un +
1

β
log

F (un)

g
, n = 0, 1, 2, . . .

Error analysis (formal) for the attainable situation:

√
g (un+1 − u†) =

√
g (un − u†) +

1

β

√
g log

F (un)

g

≈ √g (un − u†) +
1

β

√
g

g

F (u†)

F ′(u†)(un − u†)

g
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Convergence analysis (?)

un+1 = un +
1

β
log

F (un)

g
, n = 0, 1, 2, . . .

Error analysis (formal) for the attainable situation:

√
g (un+1 − u†) =

√
g (un − u†) +

1

β

√
g log

F (un)

g

≈ √g (un − u†) +
1

β

√
g

g

F (u†)

F ′(u†)(un − u†)

g

=
(
I +

1

β

1
√
g
F ′(u†)

1
√
g

)√
g (un − u†)
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Convergence analysis (?)

un+1 = un +
1

β
log

F (un)

g
, n = 0, 1, 2, . . .

Error analysis (formal) for the attainable situation:

√
g (un+1 − u†) =

√
g (un − u†) +

1

β

√
g log

F (un)

g

≈ √g (un − u†) +
1

β

√
g

g

F (u†)

F ′(u†)(un − u†)

g

=
(
I +

1

β

1
√
g
F ′(u†)

1
√
g

)√
g (un − u†)

Attn: Note that −F ′ is a positive (unbounded) operator in L2.
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Newton-type iterative schemes
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Inverse Monte Carlo

The derivative F ′(u) of the Henderson map can be assembled from
the joint 3- and 4-particle distributions of the ensemble.

The corresponding Newton scheme is known as Inverse Monte Carlo:

uk+1 = uk + F ′(uk)−1
(
g − F (uk)

)
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Generalized Newton iteration

We propose a generalized Newton scheme, where the inverse of the
Henderson map is approximated by the hypernetted chain integral
equation

u ≈ U(g) = − 1

β
log g +

1

β
(h − c) ,

Here,
h = g − 1 ∈ L∞(R+; rαdr) ,

and c is defined by the convolution integral†

c + ρ0h ∗ c = h .

It can be shown that the convolution defines a Banach algebra in
L∞(R+; rαdr), and hence c ∈ L∞(R+; rαdr) is well-defined
provided that the structure factor

S(ω) = 1 + ρ0ĥ(ω)

is positive (Wiener Lemma).
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Generalized Newton iteration

u ≈ U(g) = − 1

β
log g +

1

β
(h − c) ,

It follows that

F ′(uk)−1g ′ ≈ U ′(g)g ′ = − 1

β

g ′

g
+

1

β
(g ′ − c ′)

where ϕ = g ′ − c ′ is given in Fourier space by

ϕ̂ = ρ2
0

2 + ρ0ĥ(
1 + ρ0ĥ

)2 ĥ ĝ ′ ,

The corresponding inverse hypernetted chain iteration is defined as

uk+1 = uk +
1

β
log

gk
g

+
ρ0

β
ϕk
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Numerical results

Lennard-Jones potential

u = 4ε
(
(σ/r)12 − (σ/r)6

)
near the “triple point” (phase transition)
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Open problems

Uniqueness of potential X

Existence of potential ?

Well-posedness of IBI X

Convergence of IBI ?

Stability/Regularization properties ?
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