Inverse potentials of one-body densities

Louis Garrigue
Cermics, École des ponts ParisTech

September $17^{\text {th }}, 2021$
Moansi annual meeting

Table of contents

(1) Introduction

- The setting and the objective
- Properties of the direct map
- III-posedness
- Literature
(2) The dual problem
- Optimality properties
- Regularization
(3) Numerical inversion
- The local problem
- Graphs
- What we learn

The setting and the objective Properties of the direct map III-posedness
Literature

Table of contents

(1) Introduction

- The setting and the objective
- Properties of the direct map
- III-posedness
- Literature
(2) The dual problem
- Optimality properties
- Regularization
(3) Numerical inversion
- The local problem
- Graphs
- What we learn

The setting and the objective Properties of the direct map III-posedness
Literature

Table of contents

(1) Introduction

- The setting and the objective
- Properties of the direct map
- III-posedness
- Literature
(2) The dual problem
- Optimality properties
- Regularization
(3) Numerical inversion
- The local problem
- Graphs
- What we learn

The setting and the objective Properties of the direct map III-posedness
Literature

N-body quantum mechanics

- No spin, static, space \mathbb{R}^{d}, electrons

The setting and the objective

N-body quantum mechanics

- No spin, static, space \mathbb{R}^{d}, electrons
- States are $\Psi \in L_{\mathrm{a}}^{2}\left(\left(\mathbb{R}^{d}\right)^{N}, \mathbb{C}\right)$, with $\int_{\mathbb{R}^{d N}}|\Psi|^{2}=1$

The setting and the objective

N-body quantum mechanics

- No spin, static, space \mathbb{R}^{d}, electrons
- States are $\Psi \in L_{\mathrm{a}}^{2}\left(\left(\mathbb{R}^{d}\right)^{N}, \mathbb{C}\right)$, with $\int_{\mathbb{R}^{d N}}|\Psi|^{2}=1$
- $\Psi\left(\ldots, x_{i}, \ldots, x_{j}, \ldots\right)=-\Psi\left(\ldots, x_{j}, \ldots, x_{i}, \ldots\right)$

N-body quantum mechanics

- No spin, static, space \mathbb{R}^{d}, electrons
- States are $\Psi \in L_{\mathrm{a}}^{2}\left(\left(\mathbb{R}^{d}\right)^{N}, \mathbb{C}\right)$, with $\int_{\mathbb{R}^{d N}}|\Psi|^{2}=1$
- $\Psi\left(\ldots, x_{i}, \ldots, x_{j}, \ldots\right)=-\Psi\left(\ldots, x_{j}, \ldots, x_{i}, \ldots\right)$
- Hamiltonian : operator of $L_{a}^{2}\left(\left(\mathbb{R}^{d}\right)^{N}, \mathbb{C}\right)$

$$
H_{N}(v)=\sum_{i=1}^{N}-\Delta_{x_{i}}+\sum_{1 \leqslant i<j \leqslant N} w\left(x_{i}-x_{j}\right)+\sum_{i=1}^{N} v\left(x_{i}\right)
$$

N-body quantum mechanics

- No spin, static, space \mathbb{R}^{d}, electrons
- States are $\Psi \in L_{a}^{2}\left(\left(\mathbb{R}^{d}\right)^{N}, \mathbb{C}\right)$, with $\int_{\mathbb{R}^{d N}}|\Psi|^{2}=1$
- $\Psi\left(\ldots, x_{i}, \ldots, x_{j}, \ldots\right)=-\Psi\left(\ldots, x_{j}, \ldots, x_{i}, \ldots\right)$
- Hamiltonian : operator of $L_{\mathrm{a}}^{2}\left(\left(\mathbb{R}^{d}\right)^{N}, \mathbb{C}\right)$

$$
H_{N}(v)=\sum_{i=1}^{N}-\Delta_{x_{i}}+\sum_{1 \leqslant i<j \leqslant N} w\left(x_{i}-x_{j}\right)+\sum_{i=1}^{N} v\left(x_{i}\right)
$$

- Ground and excited states are given by the $k^{\text {th }}$ eigenspaces $\operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right)$, found by

$$
E_{N}^{(k)}(v)=\sup _{\substack{A \subset L_{\mathrm{a}}^{2}\left(\left(\mathbb{R}^{d}\right)^{N}\right) \\ \operatorname{dim}_{\mathbb{C}} A=k}} \inf _{\substack{\Psi \in A^{\perp} \\ \int|\Psi|^{2}=1 \\ \Psi \in H_{\mathrm{a}}^{1}\left(\left(\mathbb{R}^{d}\right)^{N}\right)}}\left\langle\Psi, H_{N}(v) \Psi\right\rangle
$$

N-body quantum mechanics

- No spin, static, space \mathbb{R}^{d}, electrons
- States are $\Psi \in L_{\mathrm{a}}^{2}\left(\left(\mathbb{R}^{d}\right)^{N}, \mathbb{C}\right)$, with $\int_{\mathbb{R}^{d N}}|\Psi|^{2}=1$
- $\Psi\left(\ldots, x_{i}, \ldots, x_{j}, \ldots\right)=-\Psi\left(\ldots, x_{j}, \ldots, x_{i}, \ldots\right)$
- Hamiltonian : operator of $L_{a}^{2}\left(\left(\mathbb{R}^{d}\right)^{N}, \mathbb{C}\right)$

$$
H_{N}(v)=\sum_{i=1}^{N}-\Delta_{x_{i}}+\sum_{1 \leqslant i<j \leqslant N} w\left(x_{i}-x_{j}\right)+\sum_{i=1}^{N} v\left(x_{i}\right)
$$

- Ground and excited states are given by the $k^{\text {th }}$ eigenspaces $\operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right)$, found by

$$
E_{N}^{(k)}(v)=\sup _{\substack{A \subset L_{\mathrm{a}}^{2}\left(\left(\mathbb{R}^{d}\right)^{N}\right) \\ \operatorname{dim}_{\mathbb{C}} A=k}} \inf _{\substack{\Psi \in A^{\perp} \\ \int|\Psi|^{2}=1 \\ \Psi \in H_{\mathrm{a}}^{1}\left(\left(\mathbb{R}^{d}\right)^{N}\right)}}\left\langle\Psi, H_{N}(v) \Psi\right\rangle
$$

- Curse of dimensionality

Spectrum

$$
\begin{aligned}
& \sigma_{\mathrm{ess}}\left(H_{N}(v)\right)=\left[\Sigma_{N}(v),+\infty[\right. \\
& \overline{=} \Sigma_{N}(v) \\
& -E_{N}^{(1)}(v) \\
& E_{N}^{(0)}(v)
\end{aligned}
$$

Figure: Spectrum $\sigma\left(H_{N}(v)\right)$
A $k^{\text {th }}$ bound state exists if v is in

$$
\mathcal{V}_{N, \partial}^{(k)}:=\left\{v \in L^{p}+L^{\infty} \mid E_{N}^{(k)}(v)<\inf \sigma_{\mathrm{ess}}\left(H_{N}(v)\right)\right\}
$$

The setting and the objective Properties of the direct map III-posedness
Literature

Pure and mixed states

- Pure states are

$$
\left\{P_{\Psi}=|\Psi\rangle\langle\Psi|, \Psi \in H_{\mathrm{a}}^{1}\left(\mathbb{R}^{d N}\right), \int_{\mathbb{R}^{d N}}|\Psi|^{2}=1\right\}
$$

Pure and mixed states

- Pure states are

$$
\left\{P_{\Psi}=|\Psi\rangle\langle\Psi|, \Psi \in H_{\mathrm{a}}^{1}\left(\mathbb{R}^{d N}\right), \int_{\mathbb{R}^{d N}}|\Psi|^{2}=1\right\}
$$

- Choose a basis $\left(\Psi_{i}\right)_{i}$. Mixed states are

$$
\text { Conv } \begin{aligned}
\left\{P_{\psi}\right. & \left.=|\Psi\rangle\langle\Psi|, \Psi \in H_{\mathrm{a}}^{1}\left(\mathbb{R}^{d N}\right), \int_{\mathbb{R}^{d N}}|\Psi|^{2}=1\right\} \\
& =\left\{\sum_{i \in \mathbb{N}} \lambda_{i} P_{\Psi_{i}} \mid \sum_{i=1}^{+\infty} \lambda_{i}=1, \lambda_{i} \geqslant 0\right\} \\
& =\left\{\Gamma \text { op of } H_{\mathrm{a}}^{1}\left(\mathbb{R}^{d N}\right) \mid \Gamma=\Gamma^{*} \geqslant 0, \operatorname{Tr} \Gamma=1\right\}
\end{aligned}
$$

Pure and mixed states

- Pure states are

$$
\left\{P_{\Psi}=|\Psi\rangle\langle\Psi|, \Psi \in H_{\mathrm{a}}^{1}\left(\mathbb{R}^{d N}\right), \int_{\mathbb{R}^{d N}}|\Psi|^{2}=1\right\}
$$

- Choose a basis $\left(\Psi_{i}\right)_{i}$. Mixed states are

$$
\text { Conv } \begin{aligned}
\left\{P_{\Psi}\right. & \left.=|\Psi\rangle\langle\Psi|, \Psi \in H_{\mathrm{a}}^{1}\left(\mathbb{R}^{d N}\right), \int_{\mathbb{R}^{d N}}|\Psi|^{2}=1\right\} \\
& =\left\{\sum_{i \in \mathbb{N}} \lambda_{i} P_{\Psi_{i}} \mid \sum_{i=1}^{+\infty} \lambda_{i}=1, \lambda_{i} \geqslant 0\right\} \\
& =\left\{\Gamma \text { op of } H_{\mathrm{a}}^{1}\left(\mathbb{R}^{d N}\right) \mid \Gamma=\Gamma^{*} \geqslant 0, \operatorname{Tr} \Gamma=1\right\}
\end{aligned}
$$

$k^{\text {th }}$ bound mixed states : Ran $\Gamma \subset \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right)$

The one-body density

- One-body density (much less information than Ψ)

$$
\rho_{\Psi}(x):=N \int_{\mathbb{R}^{d(N-1)}}|\Psi|^{2}\left(x, x_{2}, \ldots, x_{N}\right) \mathrm{d} x_{2} \cdots \mathrm{~d} x_{N}
$$

The one-body density

- One-body density (much less information than Ψ)

$$
\rho_{\Psi}(x):=N \int_{\mathbb{R}^{d(N-1)}}|\Psi|^{2}\left(x, x_{2}, \ldots, x_{N}\right) \mathrm{d} x_{2} \cdots \mathrm{~d} x_{N}
$$

- $\rho \geqslant 0, \int \rho_{\Psi}=N, \sqrt{\rho} \in H^{1}$

The setting and the objective Properties of the direct map III-posedness
Literature

Inverse potential

- Given $\rho \geqslant 0, \int \rho=N, k \in \mathbb{N}$, find v such that $\rho_{\Psi^{(k)}(v)}=\rho$.

Figure: Density ρ for $N=3$

The setting and the objective
Properties of the direct map
III-posedness
Literature

Inverse potential

- Given $\rho \geqslant 0, \int \rho=N, k \in \mathbb{N}$, find v such that $\rho_{\Psi^{(k)}(v)}=\rho$.

Figure: Density ρ and its inverse v, for $N=3$ and $k=2$

Inverse potential

- Given $\rho \geqslant 0, \int \rho=N, k \in \mathbb{N}$, find v such that $\rho_{\Psi^{(k)}(v)}=\rho$.

Figure: Density ρ and its inverse v, for $N=3$ and $k=2$
Existence/uniqueness?

The setting and the objective

Why finding inverse potentials ?

- Finding effective models in DFT

ρ

$$
\begin{gathered}
H_{w=0}^{N}\left(V_{e f f}\right) \\
\\
\\
\\
\\
\\
\\
\\
\\
\end{gathered}
$$

Why finding inverse potentials ?

- Finding effective models in DFT

ρ

$$
\begin{gathered}
\longrightarrow \quad H_{w=0}^{N}\left(v_{\mathrm{eff}}\right) \\
\downarrow \\
\\
\\
\\
\\
\\
\\
\\
\\
\end{gathered}(k), E_{N}^{(k)}, \ldots .
$$

- Control theory

Why finding inverse potentials?

- Finding effective models in DFT

- Control theory
- Mathematical understanding of DFT

Why finding inverse potentials?

- Finding effective models in DFT

ρ

$$
\begin{gathered}
H_{w=0}^{N}\left(v_{\mathrm{eff}}\right) \\
\downarrow \\
\Psi^{(k)}, E_{N}^{(k)}, \ldots
\end{gathered}
$$

- Control theory
- Mathematical understanding of DFT
- Optimal Effective Potential

Questions

$$
\text { DFT map: } v \mapsto \rho_{\Psi^{(k)}(v)}=\rho^{(k)}(v)
$$

Given $\rho \geqslant 0, \int \rho=N$, we search v_{ρ} such that

$$
\rho^{(k)}\left(v_{\rho}\right)=\rho
$$

Questions

$$
\text { DFT map: } v \mapsto \rho_{\Psi^{(k)}(v)}=\rho^{(k)}(v)
$$

Given $\rho \geqslant 0, \int \rho=N$, we search v_{ρ} such that

$$
\rho^{(k)}\left(v_{\rho}\right)=\rho
$$

- Definition set ?

Questions

$$
\text { DFT map: } v \mapsto \rho_{\Psi^{(k)}(v)}=\rho^{(k)}(v)
$$

Given $\rho \geqslant 0, \int \rho=N$, we search v_{ρ} such that

$$
\rho^{(k)}\left(v_{\rho}\right)=\rho
$$

- Definition set ?
- Injective ?

Questions

$$
\text { DFT map: } v \mapsto \rho_{\Psi^{(k)}(v)}=\rho^{(k)}(v)
$$

Given $\rho \geqslant 0, \int \rho=N$, we search v_{ρ} such that

$$
\rho^{(k)}\left(v_{\rho}\right)=\rho
$$

- Definition set ?
- Injective ?
- Image ? Is it dense ? The answer will be different for pure and mixed states

Questions

$$
\text { DFT map: } v \mapsto \rho_{\Psi^{(k)}(v)}=\rho^{(k)}(v)
$$

Given $\rho \geqslant 0, \int \rho=N$, we search v_{ρ} such that

$$
\rho^{(k)}\left(v_{\rho}\right)=\rho
$$

- Definition set ?
- Injective ?
- Image ? Is it dense ? The answer will be different for pure and mixed states
- Inverse problem well-posed ?

Questions

$$
\text { DFT map: } v \mapsto \rho_{\Psi^{(k)}(v)}=\rho^{(k)}(v)
$$

Given $\rho \geqslant 0, \int \rho=N$, we search v_{ρ} such that

$$
\rho^{(k)}\left(v_{\rho}\right)=\rho
$$

- Definition set ?
- Injective ?
- Image ? Is it dense ? The answer will be different for pure and mixed states
- Inverse problem well-posed ?
- Inverting algorithm ?

The setting and the objective Properties of the direct map III-posedness
Literature

Table of contents

(1) Introduction

- The setting and the objective
- Properties of the direct map
- III-posedness
- Literature
(2) The dual problem
- Optimality properties
- Regularization
(3) Numerical inversion
- The local problem
- Graphs
- What we learn

The definition set

$$
\begin{aligned}
& \mathcal{V}_{N, \partial}^{(0)}=\left\{v \in L^{p}+L^{\infty} \mid E_{N}^{(0)}(v)<\inf \sigma_{\mathrm{ess}}\left(H_{N}(v)\right)\right\} \\
& \mathcal{V}_{N}^{(0)}:=\mathcal{V}_{N, \partial}^{(0)} \cap\left\{v \mid \operatorname{dim}\left(H_{N}(v)-E_{N}^{(0)}(v)\right)=1\right\}
\end{aligned}
$$

The definition set

$$
\begin{aligned}
\mathcal{V}_{N, \partial}^{(0)} & =\left\{v \in L^{p}+L^{\infty} \mid E_{N}^{(0)}(v)<\inf \sigma_{\mathrm{ess}}\left(H_{N}(v)\right)\right\} \\
\mathcal{V}_{N}^{(0)}: & =\mathcal{V}_{N, \partial}^{(0)} \cap\left\{v \mid \operatorname{dim}\left(H_{N}(v)-E_{N}^{(0)}(v)\right)=1\right\},
\end{aligned}
$$

Theorem (Path-connectedness of the space of binding potentials)
$\cap_{i=1}^{N} \nu_{i, \partial}^{(0)}$ is path-connected

The definition set

$$
\begin{aligned}
& \mathcal{V}_{N, \partial}^{(0)}=\left\{v \in L^{p}+L^{\infty} \mid E_{N}^{(0)}(v)<\inf \sigma_{\mathrm{ess}}\left(H_{N}(v)\right)\right\} \\
& \mathcal{V}_{N}^{(0)}:=\mathcal{V}_{N, \partial}^{(0)} \cap\left\{v \mid \operatorname{dim}\left(H_{N}(v)-E_{N}^{(0)}(v)\right)=1\right\}
\end{aligned}
$$

Theorem (Path-connectedness of the space of binding potentials)
$\cap_{i=1}^{N} \mathcal{V}_{i, \partial}^{(0)}$ is path-connected

- Conjecture : $\mathcal{V}_{i+1, \partial}^{(0)} \subset \mathcal{V}_{i, \partial}^{(0)}$. Would yield $\mathcal{V}_{N, \partial}^{(0)}=\cap_{i=1}^{N} \mathcal{V}_{i, \partial}^{(0)}$

The definition set

$$
\begin{aligned}
& \mathcal{V}_{N, \partial}^{(0)}=\left\{v \in L^{p}+L^{\infty} \mid E_{N}^{(0)}(v)<\inf \sigma_{\mathrm{ess}}\left(H_{N}(v)\right)\right\} \\
& \mathcal{V}_{N}^{(0)}:=\mathcal{V}_{N, \partial}^{(0)} \cap\left\{v \mid \operatorname{dim}\left(H_{N}(v)-E_{N}^{(0)}(v)\right)=1\right\}
\end{aligned}
$$

Theorem (Path-connectedness of the space of binding potentials)
$\cap_{i=1}^{N} \mathcal{V}_{i, \partial}^{(0)}$ is path-connected

- Conjecture : $\mathcal{V}_{i+1, \partial}^{(0)} \subset \mathcal{V}_{i, \partial}^{(0)}$. Would yield $\mathcal{V}_{N, \partial}^{(0)}=\cap_{i=1}^{N} \mathcal{V}_{i, \partial}^{(0)}$

Corollary (Path-connectedness of the set v-representable densities)
The set $\rho^{(0)}\left(\cap_{i=1}^{N} \mathcal{V}_{i, \partial}^{(0)}\right)$ is path-connected

Injectivity

Theorem (Hohenberg-Kohn, 1964)

Let $w, v_{1}, v_{2} \in L^{p>\max (2,2 d / 3)}\left(\mathbb{R}^{d}\right)+L^{\infty}\left(\mathbb{R}^{d}\right)$. If there are two ground states Ψ_{1} and Ψ_{2} of $H_{N}\left(v_{1}\right)$ and $H_{N}\left(v_{2}\right)$, such that

$$
\rho \Psi_{1}=\rho_{\Psi_{2}}
$$

then $v_{1}=v_{2}+\frac{E_{1}-E_{2}}{N}$.

The setting and the objective Properties of the direct map III-posedness Literature

Compactness of $v \mapsto \rho^{(0)}(v)$

Theorem (Main properties of $\Psi^{(0)}$)

- $v \mapsto \psi^{(k)}(v)$ is \mathcal{C}^{∞} from $\mathcal{V}_{N}^{(k)}$ to H_{p}^{1}

Compactness of $v \mapsto \rho^{(0)}(v)$

Theorem (Main properties of $\Psi^{(0)}$)

- $v \mapsto \Psi^{(k)}(v)$ is \mathcal{C}^{∞} from $\mathcal{V}_{N}^{(k)}$ to H_{p}^{1}
- For $v \in \mathcal{V}_{N}^{(k)}, \mathrm{d}_{v} \Psi^{(k)}: L^{d / 2}+L^{\infty} \rightarrow H^{1} \cap\left\{\psi^{(k)}(v)\right\}^{\perp}$

$$
\left(\mathrm{d}_{v} \Psi^{(k)}\right) u=-\left(H_{N}(v)-E_{N}^{(k)}(v)\right)_{\perp}^{-1}\left(\sum_{i=1}^{N} u\left(x_{i}\right)\right) \Psi^{(k)}(v)
$$

$$
\mathrm{d}_{\mathrm{v}} \psi^{(k)} \text { is compact }
$$

Compactness of $v \mapsto \rho^{(0)}(v)$

Theorem (Main properties of $\psi^{(0)}$)

- $v \mapsto \Psi^{(k)}(v)$ is \mathcal{C}^{∞} from $\mathcal{V}_{N}^{(k)}$ to H_{p}^{1}
- For $v \in \mathcal{V}_{N}^{(k)}, \mathrm{d}_{v} \Psi^{(k)}: L^{d / 2}+L^{\infty} \rightarrow H^{1} \cap\left\{\Psi^{(k)}(v)\right\}^{\perp}$

$$
\left(\mathrm{d}_{v} \Psi^{(k)}\right) u=-\left(H_{N}(v)-E_{N}^{(k)}(v)\right)_{\perp}^{-1}\left(\sum_{i=1}^{N} u\left(x_{i}\right)\right) \Psi^{(k)}(v)
$$

$\mathrm{d}_{v} \psi^{(k)}$ is compact

- Let $\Lambda \subset \mathbb{R}^{d}$ be a bounded open set. Assume $v \in \mathcal{V}_{N}^{(0)}$, $v_{n} \rightharpoonup v$ and $v_{n} \mathbb{1}_{\mathbb{R}^{d} \backslash \Lambda} \rightarrow v \mathbb{1}_{\mathbb{R}^{d} \backslash \Lambda}$ in $L^{p>\frac{d}{2}}+L^{\infty}$. Then $E_{N}^{(0)}\left(v_{n}\right) \rightarrow E_{N}^{(0)}(v), v_{n} \in \mathcal{V}_{N}^{(0)}$ for n large enough, and $\Psi^{(0)}\left(v_{n}\right) \rightarrow \Psi^{(0)}(v)$ in H^{1}

The setting and the objective Properties of the direct map III-posedness
Literature

Table of contents

(1) Introduction

- The setting and the objective
- Properties of the direct map
- III-posedness
- Literature
(2) The dual problem
- Optimality properties
- Regularization

3 Numerical inversion

- The local problem
- Graphs
- What we learn

The setting and the objective
Properties of the direct map
III-posedness
Literature

III-posedness of the inversion

Theorem (The set of v-representable densities is very small)
Consider that the system lives in a bounded open set $\Omega \subset \mathbb{R}^{d}$. Then $L^{p>d / 2} \ni v \mapsto \rho^{(0)}(v) \in W^{1,1}$ is compact, $\left(\rho^{(0)}\right)^{-1}$ is discontinuous, and $\rho^{(0)}\left(\mathcal{V}_{N}^{(0)}\right)$ has empty interior in $W^{1,1} \cap\left\{\int \cdot=N\right\}$.

III-posedness of the inversion

Theorem (The set of v-representable densities is very small)
Consider that the system lives in a bounded open set $\Omega \subset \mathbb{R}^{d}$. Then $L^{p>d / 2} \ni v \mapsto \rho^{(0)}(v) \in W^{1,1}$ is compact, $\left(\rho^{(0)}\right)^{-1}$ is discontinuous, and $\rho^{(0)}\left(\mathcal{V}_{N}^{(0)}\right)$ has empty interior in $W^{1,1} \cap\left\{\int \cdot=N\right\}$.

The inverse problem is ill-posed!

The setting and the objective
Properties of the direct map
III-posedness
Literature

Inverse continuity

Proposition (Weak inverse continuity of Ψ)

Let $p>\max (2 d / 3,2), v, v_{n} \in \mathcal{V}_{N, \partial}^{(k)}$ such that $v_{n}-E_{N}^{(k)}\left(v_{n}\right) / N$ is bounded in $L^{p}+L^{\infty}$ and $\Psi^{(k)}\left(v_{n}\right) \rightarrow \Psi^{(k)}(v)$ in $H^{2}\left(\mathbb{R}^{d N}\right)$. Then $v_{n} \rightarrow v$ a.e. up to a subsequence.

Table of contents

(1) Introduction

- The setting and the objective
- Properties of the direct map
- III-posedness
- Literature
(2) The dual problem
- Optimality properties
- Regularization
(3) Numerical inversion
- The local problem
- Graphs
- What we learn

Existing literature

Target ρ : we search v such that

- $\rho_{\Psi^{(k)}(v)}=\rho$ for pure states, $\Psi^{(k)}(v) \in \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right)$
- $\rho_{\Gamma^{(k)}(v)}=\rho$ for mixed states,
$\operatorname{Ran} \Gamma^{(k)}(v) \subset \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right)$

Existing literature

Target ρ : we search v such that

- $\rho_{\Psi^{(k)}(v)}=\rho$ for pure states, $\Psi^{(k)}(v) \in \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right)$
- $\rho_{\Gamma^{(k)}(v)}=\rho$ for mixed states,
$\operatorname{Ran} \Gamma^{(k)}(v) \subset \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right)$

$$
\begin{aligned}
& \left\{\rho_{\Psi^{(k)}} \mid \Psi^{(k)} \in \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right),\left\|\Psi^{(k)}\right\|_{L^{2}}=1\right\} \\
& \quad \subset\left\{\rho_{\Gamma^{(k)}} \mid \operatorname{Ran} \Gamma^{(k)} \subset \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right), \operatorname{Tr} \Gamma^{(k)}=1\right\}
\end{aligned}
$$

Existing literature

Target ρ : we search v such that

- $\rho_{\Psi^{(k)}(v)}=\rho$ for pure states, $\Psi^{(k)}(v) \in \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right)$
- $\rho_{\Gamma^{(k)}(v)}=\rho$ for mixed states,

$$
\begin{aligned}
& \operatorname{Ran} \Gamma^{(k)}(v) \subset \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right) \\
& \left\{\rho_{\Psi^{(k)}} \mid \Psi^{(k)} \in \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right),\left\|\Psi^{(k)}\right\|_{L^{2}}=1\right\} \\
& \subset\left\{\rho_{\Gamma^{(k)}} \mid \operatorname{Ran} \Gamma^{(k)} \subset \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right), \operatorname{Tr} \Gamma^{(k)}=1\right\}
\end{aligned}
$$

Inverse problem solved for

Existing literature

Target ρ : we search v such that

- $\rho_{\Psi^{(k)}(v)}=\rho$ for pure states, $\Psi^{(k)}(v) \in \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right)$
- $\rho_{\Gamma^{(k)}(v)}=\rho$ for mixed states,

$$
\begin{aligned}
& \operatorname{Ran} \Gamma^{(k)}(v) \subset \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right) \\
& \left\{\rho_{\Psi^{(k)}} \mid \Psi^{(k)} \in \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right),\left\|\Psi^{(k)}\right\|_{L^{2}}=1\right\} \\
& \subset\left\{\rho_{\Gamma^{(k)}} \mid \operatorname{Ran} \Gamma^{(k)} \subset \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right), \operatorname{Tr} \Gamma^{(k)}=1\right\}
\end{aligned}
$$

Inverse problem solved for

- approximate invertibility with mixed states for $k=0$
(Lieb 1983)

Existing literature

Target ρ : we search v such that

- $\rho_{\Psi^{(k)}(v)}=\rho$ for pure states, $\Psi^{(k)}(v) \in \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right)$
- $\rho_{\Gamma^{(k)}(v)}=\rho$ for mixed states,

$$
\begin{aligned}
& \operatorname{Ran} \Gamma^{(k)}(v) \subset \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right) \\
& \left\{\rho_{\Psi^{(k)}} \mid \Psi^{(k)} \in \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right),\left\|\Psi^{(k)}\right\|_{L^{2}}=1\right\} \\
& \subset\left\{\rho_{\Gamma^{(k)}} \mid \operatorname{Ran} \Gamma^{(k)} \subset \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right), \operatorname{Tr} \Gamma^{(k)}=1\right\}
\end{aligned}
$$

Inverse problem solved for

- approximate invertibility with mixed states for $k=0$ (Lieb 1983)
- classical systems at $T>0$ (Chayes Chayes Lieb 1984)

Existing literature

Target ρ : we search v such that

- $\rho_{\Psi^{(k)}(v)}=\rho$ for pure states, $\Psi^{(k)}(v) \in \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right)$
- $\rho_{\Gamma^{(k)}(v)}=\rho$ for mixed states,

$$
\begin{aligned}
& \operatorname{Ran} \Gamma^{(k)}(v) \subset \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right) \\
& \left\{\rho_{\Psi^{(k)}} \mid \Psi^{(k)} \in \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right),\left\|\Psi^{(k)}\right\|_{L^{2}}=1\right\} \\
& \subset\left\{\rho_{\Gamma^{(k)}} \mid \operatorname{Ran} \Gamma^{(k)} \subset \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right), \operatorname{Tr} \Gamma^{(k)}=1\right\}
\end{aligned}
$$

Inverse problem solved for

- approximate invertibility with mixed states for $k=0$
(Lieb 1983)
- classical systems at $T>0$ (Chayes Chayes Lieb 1984)
- quantum systems on lattices for $k=0$ for mixed states (Chayes Chayes Ruskai 1985)

Table of contents

(1) Introduction

- The setting and the objective
- Properties of the direct map
- III-posedness
- Literature
(2) The dual problem
- Optimality properties
- Regularization
(3) Numerical inversion
- The local problem
- Graphs
- What we learn

Table of contents

(1) Introduction

- The setting and the objective
- Properties of the direct map
- III-posedness
- Literature
(2) The dual problem
- Optimality properties
- Regularization
(3) Numerical inversion
- The local problem
- Graphs
- What we learn

Dual optimality

$$
G_{\rho}^{(k)}(v):=E_{N}^{(k)}(v)-\int_{\mathbb{R}^{d}} v \rho, \quad \sup _{v \in L^{p}\left(\mathbb{R}^{d}\right)} G_{\rho}^{(0)}(v)=F_{\mathrm{L}}(\rho)
$$

Dual optimality

$$
\begin{aligned}
& G_{\rho}^{(k)}(v):=E_{N}^{(k)}(v)-\int_{\mathbb{R}^{d}} v \rho, \quad \sup _{v \in L^{\rho}\left(\mathbb{R}^{d}\right)} G_{\rho}^{(0)}(v)=F_{\mathrm{L}}(\rho) \\
& -G_{\rho}^{(k)}(v+c)=G_{\rho}^{(k)}(v)
\end{aligned}
$$

Dual optimality

$$
G_{\rho}^{(k)}(v):=E_{N}^{(k)}(v)-\int_{\mathbb{R}^{d}} v \rho, \quad \sup _{v \in L^{p}\left(\mathbb{R}^{d}\right)} G_{\rho}^{(0)}(v)=F_{\mathrm{L}}(\rho)
$$

- $G_{\rho}^{(k)}(v+c)=G_{\rho}^{(k)}(v)$
- Concave for $k=0$

Dual optimality

$$
G_{\rho}^{(k)}(v):=E_{N}^{(k)}(v)-\int_{\mathbb{R}^{d}} v \rho, \quad \sup _{v \in L^{p}\left(\mathbb{R}^{d}\right)} G_{\rho}^{(0)}(v)=F_{\mathrm{L}}(\rho)
$$

- $G_{\rho}^{(k)}(v+c)=G_{\rho}^{(k)}(v)$
- Concave for $k=0$
- On degenerate potentials, $v \mapsto \rho_{\Psi^{(k)}(v)}$ and $E_{N}^{(k)}$ are not differentiable

Dual optimality

$$
G_{\rho}^{(k)}(v):=E_{N}^{(k)}(v)-\int_{\mathbb{R}^{d}} v \rho
$$

Theorem (Optimality in the dual problem)

Dual optimality

$$
G_{\rho}^{(k)}(v):=E_{N}^{(k)}(v)-\int_{\mathbb{R}^{d}} v \rho
$$

Theorem (Optimality in the dual problem)

Take $\rho \geqslant 0, v \in \mathcal{V}_{N, \partial}^{(k)}$.
i) Are equivalent:

- there is a $k^{\text {th }}$ bound mixed state Γ of v such that $\rho_{\Gamma}=\rho$
- v is a local maximizer of $G_{\rho}^{(k)}$
- v is a global maximizer of $G_{\rho}^{(k)}$

Dual optimality

$$
G_{\rho}^{(k)}(v):=E_{N}^{(k)}(v)-\int_{\mathbb{R}^{d}} v \rho
$$

Theorem (Optimality in the dual problem)

Take $\rho \geqslant 0, v \in \mathcal{V}_{N, \partial}^{(k)}$.
i) Are equivalent:

- there is a $k^{\text {th }}$ bound mixed state Γ of v such that $\rho_{\Gamma}=\rho$
- v is a local maximizer of $G_{\rho}^{(k)}$
- v is a global maximizer of $G_{\rho}^{(k)}$
ii) If v maximizes $G_{\rho}^{(k)}$ and
- $\operatorname{dim} \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right) \in\{1,2\}$,
- or $d=1$ and $w=0$,
then v has a $k^{\text {th }}$ bound pure state ψ such that $\rho_{\Psi}=\rho$.

Dual optimality

$$
G_{\rho}^{(k)}(v):=E_{N}^{(k)}(v)-\int_{\mathbb{R}^{d}} v \rho
$$

Theorem (Optimality in the dual problem)

Take $\rho \geqslant 0, v \in \mathcal{V}_{N, \partial}^{(k)}$.
i) Are equivalent:

- there is a $k^{\text {th }}$ bound mixed state Γ of v such that $\rho_{\Gamma}=\rho$
- v is a local maximizer of $G_{\rho}^{(k)}$
- v is a global maximizer of $G_{\rho}^{(k)}$
ii) If v maximizes $G_{\rho}^{(k)}$ and
- $\operatorname{dim} \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right) \in\{1,2\}$,
- or $d=1$ and $w=0$,
then v has a $k^{\text {th }}$ bound pure state ψ such that $\rho_{\psi}=\rho$.
Does a maximum exist ?

Table of contents

(1) Introduction

- The setting and the objective
- Properties of the direct map
- Ill-posedness
- Literature
(2) The dual problem
- Optimality properties
- Regularization
(3) Numerical inversion
- The local problem
- Graphs
- What we learn

Regularization

- $G_{\rho}^{(k)}(v)=E_{N}^{(k)}(v)-\int v \rho$ is not coercive in $L^{p}!E x:$
$v \in L^{1} \cap L^{p>1}, v \geqslant 0, v_{n}(x):=n^{d} v(n x)$,
$\left\|v_{n}\right\|_{L^{p}}^{p}=n^{d(p-1)} \int v^{p} \rightarrow+\infty$ but $E_{N}^{(k)}\left(v_{n}\right)=0$, and
$\int v_{n} \rho \rightarrow \rho(0) \int v$ is bounded

Regularization

- $G_{\rho}^{(k)}(v)=E_{N}^{(k)}(v)-\int v \rho$ is not coercive in L^{p} ! Ex:
$v \in L^{1} \cap L^{p>1}, v \geqslant 0, v_{n}(x):=n^{d} v(n x)$,
$\left\|v_{n}\right\|_{L^{p}}^{p}=n^{d(p-1)} \int v^{p} \rightarrow+\infty$ but $E_{N}^{(k)}\left(v_{n}\right)=0$, and
$\int v_{n} \rho \rightarrow \rho(0) \int v$ is bounded
- Dual : restriction to potentials $V=\sum_{i \in I} v_{i} \alpha_{i}$, $v \in\left(v_{i}\right)_{i \in I} \in \ell^{\infty}(I, \mathbb{R}), \alpha_{i} \in L^{\infty}(\Omega), \sum_{i \in I} \alpha_{i}=\mathbb{1}_{\Omega}, r_{i} \in \mathbb{R}_{+}$, $r_{i}=\int \rho \alpha_{i}, \sum_{i \in I} r_{i}=N$

$$
G_{r, \alpha}^{(k)}(v):=E_{N}^{(k)}\left(\sum_{i \in I} v_{i} \alpha_{i}\right)-\sum_{i \in I} v_{i} r_{i}
$$

Coercivity

$$
G_{r, \alpha}^{(k)}(v) \leqslant-\frac{\min r}{N}\|v\|_{\ell^{1}}+c
$$

Coercivity

$$
G_{r, \alpha}^{(k)}(v) \leqslant-\frac{\min r}{N}\|v\|_{\ell^{1}}+c
$$

Theorem (Existence of the inverse potential)

When I is finite $G_{r, \alpha}^{(k)}$ is coercive and there exists a maximizer v. If $\Omega \subset \mathbb{R}^{d}$ is bounded, there is a $k^{\text {th }}$ excited N-particle ground mixed state Γ_{v} of $H_{N}\left(\sum_{i \in I} v_{i} \alpha_{i}\right)$ such that $\int \alpha_{i} \rho_{\Gamma_{v}}=r_{i}\left(=\int \alpha_{i} \rho\right) \forall i$.

Coercivity

$$
G_{r, \boldsymbol{\alpha}}^{(k)}(v) \leqslant-\frac{\min r}{N}\|v\|_{\ell^{1}}+c
$$

Theorem (Existence of the inverse potential)

When I is finite $G_{r, \alpha}^{(k)}$ is coercive and there exists a maximizer v. If $\Omega \subset \mathbb{R}^{d}$ is bounded, there is a $k^{\text {th }}$ excited N-particle ground mixed state Γ_{v} of $H_{N}\left(\sum_{i \in I} v_{i} \alpha_{i}\right)$ such that $\int \alpha_{i} \rho_{\Gamma_{v}}=r_{i}\left(=\int \alpha_{i} \rho\right) \forall i$.

- Constructive inversion with mixed states

For a given $k, \rho, \varepsilon>0$, there exists a potential v and Γ_{v} with $\operatorname{Ran} \Gamma_{v} \subset \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right)$ such that
$\left\|\rho_{\Gamma_{v}}-\rho\right\|_{L^{1} \cap L^{q}} \leqslant \varepsilon$. The state can be chosen to be pure when $d=1$ and $w=0$.

Table of contents

(1) Introduction

- The setting and the objective
- Properties of the direct map
- III-posedness
- Literature
(2) The dual problem
- Optimality properties
- Regularization
(3) Numerical inversion
- The local problem
- Graphs
- What we Iearn

Table of contents

(1) Introduction

- The setting and the objective
- Properties of the direct map
- III-posedness
- Literature
(2) The dual problem
- Optimality properties
- Regularization
(3) Numerical inversion
- The local problem
- Graphs
- What we learn

"Gradient" ascent

Minimize $J(v):=\int_{\mathbb{R}^{d}}\left(\rho_{\Psi^{(k)}(v)}-\rho\right)^{2} ?$

"Gradient" ascent

Minimize $J(v):=\int_{\mathbb{R}^{d}}\left(\rho_{\Psi^{(k)}(v)}-\rho\right)^{2} ?$
Second idea, maximize

$$
G_{\rho}^{(k)}(v):=E_{N}^{(k)}(v)-\int_{\mathbb{R}^{d}} v \rho
$$

The local problem
Graphs
What we learn

Local dual problem

$$
\begin{aligned}
& \left\|\Psi_{i}\right\|=1, \Psi_{i} \perp \Psi_{j} \quad \lambda_{i} \in \mathbb{C}, \sum_{i}\left|\lambda_{i}\right|^{2}=1 \\
& 0 \leqslant i, j \leqslant M_{k}-k
\end{aligned}
$$

Local dual problem

$$
+\delta_{v} G_{\rho}^{(k)}(u)=\max _{\substack{\Psi_{0}, \ldots, \Psi_{M_{k}-k} \in \operatorname{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right) \\\left\|\Psi_{i}\right\|=1, \Psi_{i} \perp \Psi_{j} \\ 0 \leqslant i, j \leqslant M_{k}-k}}^{\substack{\Psi=\sum_{i=0}^{M_{k}-k} \lambda_{i} \Psi_{i} \\ \lambda_{i} \in \mathbb{C}, \sum_{i}\left|\lambda_{i}\right|^{2}=1}} \min _{\substack{ \\\Psi_{0}}} \int\left(\rho_{\Psi}-\rho\right) u
$$

Proposition (Local dual problem)

Take $w \geqslant 0, v \in \mathcal{V}_{N, \partial}^{(k)}$. We have

$$
\sup _{\substack{u \in L^{\rho}+L^{\infty} \\\|u\|_{L^{p}+L}=1}}+\delta_{v} G_{\rho}^{(k)}(u)=\max _{\substack{Q \subset \operatorname{Ker}_{\mathbb{R}}\left(H_{N}(v)-E_{N}^{(k)}(v)\right) \\ \operatorname{dim}_{\mathbb{R}} Q=M_{k}-k+1}} \min _{\substack{\Gamma \in \mathcal{S}(Q) \\ \Gamma \geqslant 0, \operatorname{Tr} \Gamma=1}}\left\|\rho_{\Gamma}-\rho\right\|_{L^{\prime}},
$$

and the supremum is attained by $u^{*}=\left|\frac{\rho_{\Gamma^{*}-\rho}}{\left\|\rho_{\Gamma^{*}}-\rho\right\|_{L p^{\prime}}}\right|^{p^{\prime}-1} \operatorname{sgn}\left(\rho_{\Gamma^{*}}-\rho\right)$, where Γ^{*} is an optimizer of the right hand side.

The local problem
Graphs
What we learn

"Gradient" ascent

Maximize

$$
G_{\rho}^{(k)}(v):=E_{N}^{(k)}(v)-\int_{\mathbb{R}^{d}} v \rho
$$

"Gradient" ascent

Maximize

$$
G_{\rho}^{(k)}(v):=E_{N}^{(k)}(v)-\int_{\mathbb{R}^{d}} v \rho
$$

- Grid discretization \mathbb{Z}^{d}

"Gradient" ascent

Maximize

$$
G_{\rho}^{(k)}(v):=E_{N}^{(k)}(v)-\int_{\mathbb{R}^{d}} v \rho
$$

- Grid discretization \mathbb{Z}^{d}
- Consider a target $\rho \geqslant 0, \int \rho=N$

"Gradient" ascent

Maximize

$$
G_{\rho}^{(k)}(v):=E_{N}^{(k)}(v)-\int_{\mathbb{R}^{d}} v \rho
$$

- Grid discretization \mathbb{Z}^{d}
- Consider a target $\rho \geqslant 0, \int \rho=N$
- Start from Bohm's potential $v_{0}=\frac{\Delta \sqrt{\rho}}{\sqrt{\rho}}$

"Gradient" ascent

Maximize

$$
G_{\rho}^{(k)}(v):=E_{N}^{(k)}(v)-\int_{\mathbb{R}^{d}} v \rho
$$

- Grid discretization \mathbb{Z}^{d}
- Consider a target $\rho \geqslant 0, \int \rho=N$
- Start from Bohm's potential $v_{0}=\frac{\Delta \sqrt{\rho}}{\sqrt{\rho}}$
- Iterate $v_{n+1}=v_{n}+\alpha u^{*}$

$$
+\delta_{v} G_{\rho}^{(k)}\left(u^{*}\right)=\max _{\|u\|=1}+\delta_{v} G_{\rho}^{(k)}(u)>0
$$

"Gradient" ascent

Maximize

$$
G_{\rho}^{(k)}(v):=E_{N}^{(k)}(v)-\int_{\mathbb{R}^{d}} v \rho
$$

- Grid discretization \mathbb{Z}^{d}
- Consider a target $\rho \geqslant 0, \int \rho=N$
- Start from Bohm's potential $v_{0}=\frac{\Delta \sqrt{\rho}}{\sqrt{\rho}}$
- Iterate $v_{n+1}=v_{n}+\alpha u^{*}$

$$
+\delta_{v} G_{\rho}^{(k)}\left(u^{*}\right)=\max _{\|u\|=1}+\delta_{v} G_{\rho}^{(k)}(u)>0
$$

- Line search for α, temperature

"Gradient" ascent

Maximize

$$
G_{\rho}^{(k)}(v):=E_{N}^{(k)}(v)-\int_{\mathbb{R}^{d}} v \rho
$$

- Grid discretization \mathbb{Z}^{d}
- Consider a target $\rho \geqslant 0, \int \rho=N$
- Start from Bohm's potential $v_{0}=\frac{\Delta \sqrt{\rho}}{\sqrt{\rho}}$
- Iterate $v_{n+1}=v_{n}+\alpha u^{*}$

$$
+\delta_{v} G_{\rho}^{(k)}\left(u^{*}\right)=\max _{\|u\|=1}+\delta_{v} G_{\rho}^{(k)}(u)>0
$$

- Line search for α, temperature
- Convergence criterion: $\left\|\rho^{(k)}\left(v_{n}\right)-\rho\right\|_{L^{1}} / N \leqslant \varepsilon$

Goal

What we know

- Approximate inversion with mixed states for any k

Goal

What we know

- Approximate inversion with mixed states for any k
- When $d=1$, the set of pure state densities

$$
\begin{aligned}
\left\{\rho_{\Psi_{v}^{(k)}} \mid v\right. & \in\left(L^{p}+L^{\infty}\right)(\Omega) \\
& \left.\Psi_{v}^{(k)} \in \operatorname{Ker}\left(H_{N}^{w=0}(v)-E_{N}^{(k)}(v)\right), \int_{\Omega^{N}}\left|\Psi_{v}^{(k)}\right|^{2}=1\right\}
\end{aligned}
$$

is dense for the $L^{1} \cap L^{q}$ norm

Goal

What we know

- Approximate inversion with mixed states for any k
- When $d=1$, the set of pure state densities

$$
\begin{aligned}
\left\{\rho_{\Psi_{v}^{(k)}} \mid v\right. & \in\left(L^{p}+L^{\infty}\right)(\Omega) \\
& \left.\Psi_{v}^{(k)} \in \operatorname{Ker}\left(H_{N}^{w=0}(v)-E_{N}^{(k)}(v)\right), \int_{\Omega^{N}}\left|\Psi_{v}^{(k)}\right|^{2}=1\right\}
\end{aligned}
$$

is dense for the $L^{1} \cap L^{q}$ norm

- When $d=3$, it's not (uses Lieb 83)

Goal

What we know

- Approximate inversion with mixed states for any k
- When $d=1$, the set of pure state densities

$$
\begin{aligned}
\left\{\rho_{\Psi_{v}^{(k)}} \mid v\right. & \in\left(L^{p}+L^{\infty}\right)(\Omega) \\
& \left.\Psi_{v}^{(k)} \in \operatorname{Ker}\left(H_{N}^{w=0}(v)-E_{N}^{(k)}(v)\right), \int_{\Omega^{N}}\left|\Psi_{v}^{(k)}\right|^{2}=1\right\}
\end{aligned}
$$

is dense for the $L^{1} \cap L^{q}$ norm

- When $d=3$, it's not (uses Lieb 83)

What we want to know

Goal

What we know

- Approximate inversion with mixed states for any k
- When $d=1$, the set of pure state densities

$$
\begin{aligned}
\left\{\rho_{\Psi_{v}^{(k)}} \mid v\right. & \in\left(L^{p}+L^{\infty}\right)(\Omega) \\
& \left.\Psi_{v}^{(k)} \in \operatorname{Ker}\left(H_{N}^{w=0}(v)-E_{N}^{(k)}(v)\right), \int_{\Omega^{N}}\left|\Psi_{v}^{(k)}\right|^{2}=1\right\}
\end{aligned}
$$

is dense for the $L^{1} \cap L^{q}$ norm

- When $d=3$, it's not (uses Lieb 83)

What we want to know

- Uniqueness for $k \geqslant 1$?

Goal

What we know

- Approximate inversion with mixed states for any k
- When $d=1$, the set of pure state densities

$$
\begin{aligned}
& \left\{\rho_{\Psi_{v}^{(k)}} \mid v \in\left(L^{p}+L^{\infty}\right)(\Omega)\right. \\
& \left.\quad \Psi_{v}^{(k)} \in \operatorname{Ker}\left(H_{N}^{w=0}(v)-E_{N}^{(k)}(v)\right), \int_{\Omega^{N}}\left|\Psi_{v}^{(k)}\right|^{2}=1\right\}
\end{aligned}
$$

is dense for the $L^{1} \cap L^{q}$ norm

- When $d=3$, it's not (uses Lieb 83)

What we want to know

- Uniqueness for $k \geqslant 1$?
- Inversion with pure states for $d=2$?

Table of contents

(1) Introduction

- The setting and the objective
- Properties of the direct map
- III-posedness
- Literature
(2) The dual problem
- Optimality properties
- Regularization
(3) Numerical inversion
- The local problem
- Graphs
- What we learn

$d=1$

Figure: Plot for $d=1, N=5, k=0$ on the left, $k=3$ on the right, $\log _{10}\left|\rho_{n}-\rho\right|, \log _{10}\left|v_{n}-v\right|$

Uniqueness

Figure: $d=1, N=3, k=0$ left, $k=1$ middle, $k=5$ right. Densities in blue, inverse potentials in other colors

The local problem
Graphs
What we learn

$d=2$

Figure: $d=2, N=5, k=0 ; v, \rho_{\Psi^{(0)}(v)}, \log _{10}\left|v_{n}-v\right|$, $\log _{10}\left|\rho_{n}-\rho_{\Psi^{(0)}(v)}\right|$

$$
d=3
$$

Figure: $d=3, N=4, k=1 ; \rho, v_{n}, \log _{10}\left|\rho_{n}-\rho\right|$

Simulations at high densities

Figure: Convergence of $\rho_{N}^{-1}(N \rho) / N^{\frac{2}{d}}, \int \rho=1$

Simulations at high densities

Figure: Convergence of $\rho_{N}^{-1}(N \rho) / N^{\frac{2}{d}}, \int \rho=1$

Conjecture

For any $\rho \geqslant 0$ such that $\int \rho=1$ and $\sqrt{\rho} \in H^{1}$,

$$
\frac{\rho_{N}^{-1}(N \rho)}{N^{\frac{2}{d}}} \underset{N \rightarrow+\infty}{\rightarrow}
$$

Conjecture

For any $\rho \geqslant 0$ such that $\int \rho=1$ and $\sqrt{\rho} \in H^{1}$,

$$
\frac{\rho_{N}^{-1}(N \rho)}{N^{\frac{2}{d}}} \underset{N \rightarrow+\infty}{\rightarrow} v_{T \mathrm{~F}, \rho}=-\rho^{\frac{2}{d}}
$$

The direct statement version is in Founais, Lewin, Solovej (2019)

Table of contents

(1) Introduction

- The setting and the objective
- Properties of the direct map
- III-posedness
- Literature
(2) The dual problem
- Optimality properties
- Regularization
(3) Numerical inversion
- The local problem
- Graphs
- What we learn

What we learn from simulations

- Confirms Gaudoin and Burke (2004), no uniqueness for $k \geqslant 1$

What we learn from simulations

- Confirms Gaudoin and Burke (2004), no uniqueness for $k \geqslant 1$
- For $d=2$, the set of pure states densities

$$
\begin{aligned}
\left\{\rho_{\psi_{v}^{(k)}} \mid v\right. & \in\left(L^{p}+L^{\infty}\right)(\Omega) \\
& \left.\Psi_{v}^{(k)} \in \operatorname{Ker}\left(H_{N}^{w=0}(v)-E_{N}^{(k)}(v)\right), \int_{\Omega^{N}}\left|\Psi_{v}^{(k)}\right|^{2}=1\right\}
\end{aligned}
$$

is dense in the set of positive functions

What we learn from simulations

- Confirms Gaudoin and Burke (2004), no uniqueness for $k \geqslant 1$
- For $d=2$, the set of pure states densities

$$
\begin{aligned}
\left\{\rho_{\psi_{v}^{(k)}} \mid v\right. & \in\left(L^{p}+L^{\infty}\right)(\Omega) \\
& \left.\Psi_{v}^{(k)} \in \operatorname{Ker}\left(H_{N}^{w=0}(v)-E_{N}^{(k)}(v)\right), \int_{\Omega^{N}}\left|\Psi_{v}^{(k)}\right|^{2}=1\right\}
\end{aligned}
$$

is dense in the set of positive functions

- Degeneracies are generic, even for $d=1$. Need to be considered, not in literature

Conclusion

- No uniqueness for $k \geqslant 1$ (simulations)

Conclusion

- No uniqueness for $k \geqslant 1$ (simulations)
- Constructive mixed states inversion: for any ρ, k, d, ε, we can find v such that $\left\|\rho_{\Gamma^{(k)}(v)}-\rho\right\|_{L^{1} \cap L^{q}} \leqslant \varepsilon$

Conclusion

- No uniqueness for $k \geqslant 1$ (simulations)
- Constructive mixed states inversion: for any ρ, k, d, ε, we can find v such that $\left\|\rho_{\Gamma^{(k)}(v)}-\rho\right\|_{L^{1} \cap L^{q}} \leqslant \varepsilon$
- Pure states inversion:
- $d=1$ yes (theoretical)
- $d=2$ yes (simulations)
- $d=3$ no (theoretical but not rigorous)

Conclusion

- No uniqueness for $k \geqslant 1$ (simulations)
- Constructive mixed states inversion: for any ρ, k, d, ε, we can find v such that $\left\|\rho_{\Gamma^{(k)}(v)}-\rho\right\|_{L^{1} \cap L^{q}} \leqslant \varepsilon$
- Pure states inversion:
- $d=1$ yes (theoretical)
- $d=2$ yes (simulations)
- $d=3$ no (theoretical but not rigorous)
- We gave an algorithm taking into account degeneracies

