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Spectrum

Uess(HN(V)) = [ZN(V)ﬂ +OO[

Tn(v)

EV(v)

EV(v)
Figure: Spectrum o (Hy(v))

A kth bound state exists if v is in

V) = {v € LP 4™ ‘ EN(v) < infaess(HN(v))}
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Figure: Density p for N =3

9/45



The setting and the objective
Properties of the direct map
Ill-posedness

Literature

Introduction

Inverse potential

o Given p>0, [p=N, k€N, find v such that Putk(y) = P-

— the
— v

Figure: Density p and its inverse v, for N =3 and k =2

10/ 45



The setting and the objective
Properties of the direct map
Ill-posedness

Literature

Introduction

Inverse potential

o Given p>0, [p=N, k€N, find v such that Putk(y) = P-

— the
— v

Figure: Density p and its inverse v, for N =3 and k =2
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Let w, vy, vp € [P>MaX(2:2d/3)(Rd) 4 [°(RY). If there are two
ground states W1 and W, of Hy(v1) and Hy(v2), such that

p\U1 = p\lfza

then vi = vo + 1_52

15 /45



The setting and the objective
Properties of the direct map
Ill-posedness

Literature

Introduction

Compactness of v p(O(v)

Theorem (Main properties of W(0)

o v WK(v) is C>® from V,(Vk) to H}

16 /45



The setting and the objective
Properties of the direct map
Ill-posedness

Literature

Introduction

Compactness of v — p(O(v)

Theorem (Main properties of W(0)
o v WK(v) is C>® from V,(Vk) to H}

o Forve VP, d,wlh . 14/2 4 1% 5 H q {wk(v)}"

(W) u = —(Hu(v) - EP (1)) (TLau() WO (v),

d, vk js compact

16 /45



The setting and the objective
Properties of the direct map
Ill-posedness

Literature

Introduction

Compactness of v — p(O(v)

Theorem (Main properties of W(0)

o v WK(v) is C>® from V,(Vk) to H}

o Forve VP, d,wlh . 14/2 4 1% 5 H q {wk(v)}"

(W) u = —(Hu(v) - EP (1)) (TLau() WO (v),

d, vk js compact

o Let A C RY be a bounded open set. Assume v € V(O),

and volga\pn — vIga\p in LP>5 4+ L. Then
E,(Vo)(v,,) — E,(Vo)(v), Vp € V,(\?) for n large enough, and
vO(v,) = wO(v)|in H
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Then | LP>9/2 5 v s pO(v) € Wbt is compact| (p@)~1 s

discontinuous, and p(o)(V,(\?)) has empty interior in
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The inverse problem is ill-posed !
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Proposition (Weak inverse continuity of V)

Let p > max(2d/3,2), v, v, € V,(Vk’) such that v, — E (v,,)/N is
bounded in LP 4+ L and | W) (v,) — WK (v) | in H2(RIN). Then

a.e. up to a subsequence.
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@ approximate invertibility with mixed states for k =0
(Lieb 1983)
o classical systems at T > 0 (Chayes Chayes Lieb 1984)
@ quantum systems on lattices for k = 0 for mixed states
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Optimality properties

The dual problem Regularization

Dual optimality

W= B [ s GO0 =A0)
RI veLP(RY)

o G{(v+c)=6(v)

@ Concave for k=0

@ On degenerate potentials, v — Pu)(v) and E,(Vk) are
not differentiable
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o there is a k™ bound mixed state T of v such that pr = p
(k)

e v is a local maximizer of G,
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i) If v maximizes G‘gk) and
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Theorem (Optimality in the dual problem)

Take p > 0, v € V(k)

i) Are equivalent:
o there is a k™ bound mixed state T of v such that pr = p
(k)

e v is a local maximizer of G,
e v is a global maximizer of G,gk)
i) If v maximizes G,Sk) and
o dimKer (Hy(v) — E,(Vk)(v)) € {1,2},
e ord=1and w=0,
then v has a k™ bound pure state V such that py = p.

Does a maximum exist 7
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The dual problem

Regularization

° G,gk)(v) = E,(Vk)(v) — [ vpis not coercive in LP | Ex :
velLllnLP?l v >0, vy(x) := nv(nx),
[valfs = n9P=1) [vP — t00 but E,(Vk)(v,,) =0, and
[ vap — p(0) [ v is bounded

@ Dual : restriction to potentials V' =} ., via;,
v E (V,'),'E/ S EW(/,R), o € LOO(Q), Ziel aj=1q, r € R+,
ri=Jpai Y ri=N

) S

i€l
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Coercivity

Theorem (Existence of the inverse potential)

When | is finite Gr(ko)‘ is coercive and there exists a maximizer v. If
Q C RY is bounded, there is a k™ excited N-particle ground mixed
state [, of Hy (3¢ vicvi) such that [ aipr, = ri (= [ aip) Vi.

° ’Constructive inversion with mixed states\
For a given k, p, € > 0, there exists a potential v and I',, with
RanT, C Ker (Hn(v) — E,(Vk)(v)) such that

lor, — pliine < €. The state can be chosen to be
when d =1 and w = 0.
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Numerical inversion What we learn

Local dual problem

K .
+5VG;g Nu) = max " rALunk /(pw —p)u
Vo,.... Wy, —keKer (Hy(v)-EP(v)) w=31"%
[Wil=1,v; LV; \eC z,m _1
0<i j<My—k

Proposition (Local dual problem)

Takew >0, v € V(k) We have

sup 4, Glgk)(u) =
uELPHL®
”u||LP+L00:1

max min

dimg Q=Mj— k+1 r>0,Trr=1

/

and the supremum is attained by u* = Hpgfpll
where * is an optimizer of the right hand s:de

sgn(pr=

lor = ol e
QCKerp(Hy(v)—EP(v)) _TES(Q) L

-p),
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“Gradient” ascent

Maximize

Glgk)(v) = E,(Vk)(v) —/ vp
Rd

o Grid discretization Z9

o Consider a target p >0, [p=N
: . AV
@ Start from Bohm's potential vy = SV
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“Gradient” ascent

Maximize

Grid discretization Z¢

°
o Consider a target p >0, [p=N
@ Start from Bohm's potential vy = %
e lterate vy41 = v, + au*
o, G(k)( )= "r;rl1"3_x1 +5,,G,§k)(u) >0
@ Line search for «, temperature
e Convergence criterion: Hp(k)(v,,) - pHL1 /N <e
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What we know
@ Approximate inversion with mixed states for any k
@ When d = 1, the set of pure state densities

{wa | v e (LP+ L7)(Q),

vl

Wk € Ker (HE=0(v) — E®(v)), /
QN

2
- 1}
is dense for the L1 N L9 norm
@ When d = 3, it's not (uses Lieb 83)
What we want to know
@ Uniqueness for k > 17

@ Inversion with pure states for d =2 7
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Uniqueness

N JA

J

Figure: d =1, N =3, k =0 left, kK = 1 middle, kK = 5 right. Densities in
blue, inverse potentials in other colors
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Figure: Convergence of p,T,l(Np)/Ng, fp=1
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Figure: Convergence of p,T,l(Np)/Ng, fp=1
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Conjecture

For any p > 0 such that [p=1and \/p € H,

-1
pn” (Np) 2
— VT = —pd
Nd N—+o00 P P

The direct statement version is in Founais, Lewin, Solovej (2019)
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What we learn from simulations

e Confirms Gaudoin and Burke (2004), no uniqueness for k > 1

@ For d = 2, the set of pure states densities

{pw) Ve 1P+ 1®)@),

W € Ker (H=(v) — E®(v)), / Wik

QN

-

is dense in the set of positive functions

@ Degeneracies are generic, even for d = 1. Need to be
considered, not in literature
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Conclusion

@ No uniqueness for k > 1 (simulations)
@ Constructive mixed states inversion: for any p, k, d, e, we can

<e

find v such that Hp,—(k)(v) — p‘ .y

@ Pure states inversion:

o d =1 yes (theoretical)
o d =2 yes (simulations)
o d = 3 no (theoretical but not rigorous)

@ We gave an algorithm taking into account degeneracies
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