Inverse potentials of one-body densities

Louis Garrigue Cermics, École des ponts ParisTech

September 17th, 2021 Moansi annual meeting

Table of contents

- The setting and the objective
- Properties of the direct map
- Ill-posedness
- Literature
- 2 The dual problem
 - Optimality properties
 - Regularization
- 3 Numerical inversion
 - The local problem
 - Graphs
 - What we learn

The setting and the objective Properties of the direct map II-posedness Literature

Table of contents

- The setting and the objective
- Properties of the direct map
- Ill-posedness
- Literature
- 2 The dual problem
 - Optimality properties
 - Regularization
- 3 Numerical inversion
 - The local problem
 - Graphs
 - What we learn

The setting and the objective Properties of the direct map Ill-posedness Literature

Table of contents

- The setting and the objective
- Properties of the direct map
- Ill-posedness
- Literature
- 2 The dual problem
 - Optimality properties
 - Regularization
- 3 Numerical inversion
 - The local problem
 - Graphs
 - What we learn

The setting and the objective Properties of the direct map Ill-posedness Literature

N-body quantum mechanics

• No spin, static, space \mathbb{R}^d , electrons

The setting and the objective Properties of the direct map Ill-posedness Literature

N-body quantum mechanics

• No spin, static, space \mathbb{R}^d , electrons

• States are
$$\Psi \in L^2_{\sf a}\left(\left(\mathbb{R}^d
ight)^N,\mathbb{C}
ight)$$
, with $\int_{\mathbb{R}^{dN}} |\Psi|^2 = 1$

The setting and the objective Properties of the direct map Ill-posedness Literature

N-body quantum mechanics

- No spin, static, space \mathbb{R}^d , electrons
- States are $\Psi \in L^2_a\left(\left(\mathbb{R}^d\right)^N, \mathbb{C}\right)$, with $\int_{\mathbb{R}^{dN}} |\Psi|^2 = 1$ • $\Psi(\dots, x_i, \dots, x_i, \dots) = -\Psi(\dots, x_i, \dots, x_i, \dots)$

The setting and the objective Properties of the direct map Ill-posedness Literature

N-body quantum mechanics

- No spin, static, space \mathbb{R}^d , electrons
- States are $\Psi \in L^2_a\left(\left(\mathbb{R}^d\right)^N, \mathbb{C}\right)$, with $\int_{\mathbb{R}^{dN}} |\Psi|^2 = 1$
- $\Psi(\ldots, x_i, \ldots, x_j, \ldots) = -\Psi(\ldots, x_j, \ldots, x_i, \ldots)$
- Hamiltonian : operator of $L^2_a((\mathbb{R}^d)^N, \mathbb{C})$

$$H_N(v) = \sum_{i=1}^n -\Delta_{x_i} + \sum_{1 \leq i < j \leq N} w(x_i - x_j) + \sum_{i=1}^n v(x_i)$$

The setting and the objective Properties of the direct map Ill-posedness Literature

N-body quantum mechanics

- No spin, static, space \mathbb{R}^d , electrons
- States are $\Psi \in L^2_a\left(\left(\mathbb{R}^d\right)^N, \mathbb{C}\right)$, with $\int_{\mathbb{R}^{dN}} |\Psi|^2 = 1$
- $\Psi(\ldots, x_i, \ldots, x_j, \ldots) = -\Psi(\ldots, x_j, \ldots, x_i, \ldots)$
- Hamiltonian : operator of $L^2_a((\mathbb{R}^d)^N, \mathbb{C})$ $H_N(y) = \sum_{N=0}^{N} -\Delta_{Y_n} + \sum_{N=0}^{N} w(x_i - x_i) + \sum_{N=0}^{N} v(x_i)$

$$H_N(v) = \sum_{i=1}^{\infty} -\Delta_{x_i} + \sum_{1 \leq i < j \leq N} w(x_i - x_j) + \sum_{i=1}^{\infty} v(x_i)$$

• Ground and excited states are given by the k^{th} eigenspaces Ker $\left(H_N(v) - E_N^{(k)}(v)\right)$, found by $E_N^{(k)}(v) = \sup_{\substack{A \subset L^2_a((\mathbb{R}^d)^N) \\ \dim_{\mathbb{C}} A = k}} \inf_{\substack{\Psi \in A^\perp \\ \int |\Psi|^2 = 1 \\ \Psi \in H^1_a((\mathbb{R}^d)^N)}} \langle \Psi, H_N(v)\Psi \rangle$

The setting and the objective Properties of the direct map Ill-posedness Literature

N-body quantum mechanics

- No spin, static, space \mathbb{R}^d , electrons
- States are $\Psi \in L^2_a\left(\left(\mathbb{R}^d\right)^N, \mathbb{C}\right)$, with $\int_{\mathbb{R}^{dN}} |\Psi|^2 = 1$
- $\Psi(\ldots, x_i, \ldots, x_j, \ldots) = -\Psi(\ldots, x_j, \ldots, x_i, \ldots)$
- Hamiltonian : operator of $L^2_a((\mathbb{R}^d)^N, \mathbb{C})$

$$H_N(v) = \sum_{i=1}^{N} -\Delta_{x_i} + \sum_{1 \le i < j \le N} w(x_i - x_j) + \sum_{i=1}^{N} v(x_i)$$

- Ground and excited states are given by the k^{th} eigenspaces Ker $\left(H_N(v) - E_N^{(k)}(v)\right)$, found by $E_N^{(k)}(v) = \sup_{\substack{A \subset L^2_a((\mathbb{R}^d)^N) \\ \dim_{\mathbb{C}} A = k}} \inf_{\substack{\Psi \in A^\perp \\ \int |\Psi|^2 = 1 \\ \Psi \in H^1_a((\mathbb{R}^d)^N)}} \langle \Psi, H_N(v)\Psi \rangle$
- Curse of dimensionality

The setting and the objective Properties of the direct map Ill-posedness Literature

Spectrum

$$\sigma_{ess}(H_N(v)) = [\Sigma_N(v), +\infty[$$

$$\Sigma_N(v)$$

$$= E_N^{(1)}(v)$$

$$= E_N^{(0)}(v)$$

Figure: Spectrum $\sigma(H_N(v))$

A k^{th} bound state exists if v is in $\mathcal{V}_{N,\partial}^{(k)} := \left\{ v \in L^p + L^{\infty} \mid E_N^{(k)}(v) < \inf \sigma_{\text{ess}}(H_N(v)) \right\}$ _{6/45}

The setting and the objective Properties of the direct map Ill-posedness Literature

Pure and mixed states

• Pure states are

$$\left\{ egin{aligned} P_{\Psi} = \ket{\Psi}ra{\Psi}, \Psi \in H^1_{\mathsf{a}}(\mathbb{R}^{dN}), \int_{\mathbb{R}^{dN}} |\Psi|^2 = 1
ight\} \end{aligned}$$

The setting and the objective Properties of the direct map Ill-posedness Literature

Pure and mixed states

• Pure states are

$$\left\{ egin{aligned} egin{aligned} P_{\Psi} = \ket{\Psi}ra{\Psi}, \Psi \in H^1_{\mathsf{a}}(\mathbb{R}^{dN}), \int_{\mathbb{R}^{dN}} |\Psi|^2 = 1 \end{aligned}
ight\}$$

• Choose a basis $(\Psi_i)_i$. Mixed states are

$$\begin{aligned} \mathsf{Conv} \ \left\{ P_{\Psi} = |\Psi\rangle \left\langle \Psi \right|, \Psi \in \mathcal{H}^{1}_{\mathsf{a}}(\mathbb{R}^{dN}), \int_{\mathbb{R}^{dN}} |\Psi|^{2} = 1 \right\} \\ = \left\{ \sum_{i \in \mathbb{N}} \lambda_{i} P_{\Psi_{i}} \mid \sum_{i=1}^{+\infty} \lambda_{i} = 1, \lambda_{i} \geqslant 0 \right\} \\ = \left\{ \Gamma \text{ op of } \mathcal{H}^{1}_{\mathsf{a}}(\mathbb{R}^{dN}) \mid \Gamma = \Gamma^{*} \geqslant 0, \mathrm{Tr} \, \Gamma = 1 \right\} \end{aligned}$$

The setting and the objective Properties of the direct map Ill-posedness Literature

Pure and mixed states

Pure states are

$$\left\{ egin{aligned} P_{\Psi} = \ket{\Psi}ra{\Psi}, \Psi \in H^1_{\mathsf{a}}(\mathbb{R}^{dN}), \int_{\mathbb{R}^{dN}} |\Psi|^2 = 1
ight\} \end{aligned}$$

• Choose a basis $(\Psi_i)_i$. Mixed states are

$$\begin{split} \mathsf{Conv} \; & \left\{ P_{\Psi} = \left| \Psi \right\rangle \left\langle \Psi \right|, \Psi \in \mathcal{H}^{1}_{\mathsf{a}}(\mathbb{R}^{dN}), \int_{\mathbb{R}^{dN}} \left| \Psi \right|^{2} = 1 \right\} \\ & = \left\{ \sum_{i \in \mathbb{N}} \lambda_{i} P_{\Psi_{i}} \; \middle| \; \sum_{i=1}^{+\infty} \lambda_{i} = 1, \lambda_{i} \geqslant 0 \right\} \\ & = \left\{ \mathsf{\Gamma} \; \mathsf{op} \; \mathsf{of} \; \mathcal{H}^{1}_{\mathsf{a}}(\mathbb{R}^{dN}) \; \middle| \; \mathsf{\Gamma} = \mathsf{\Gamma}^{*} \geqslant 0, \mathrm{Tr} \; \mathsf{\Gamma} = 1 \right\} \end{split}$$

 k^{th} bound mixed states : Ran $\Gamma \subset \mathsf{Ker}\left(H_N(v) - E_N^{(k)}(v)\right)$

The setting and the objective Properties of the direct map Ill-posedness Literature

The one-body density

• One-body density (much less information than Ψ)

$$\rho_{\Psi}(x) := N \int_{\mathbb{R}^{d(N-1)}} |\Psi|^2 (x, x_2, \dots, x_N) \mathrm{d}x_2 \cdots \mathrm{d}x_N$$

The setting and the objective Properties of the direct map Ill-posedness Literature

The one-body density

• One-body density (much less information than Ψ)

$$ho_{\Psi}(x) := N \int_{\mathbb{R}^{d(N-1)}} |\Psi|^2 (x, x_2, \dots, x_N) \mathrm{d} x_2 \cdots \mathrm{d} x_N$$

•
$$\rho \geqslant 0$$
, $\int \rho_{\Psi} = N$, $\sqrt{\rho} \in H^1$

Inverse potential

• Given
$$ho \geqslant$$
 0, $\int
ho = N$, $k \in \mathbb{N}$, find v such that $ho_{\Psi^{(k)}(v)} =
ho$.

Figure: Density ρ for N = 3

Introduction The dual problem Numerical inversion The dual problem

Inverse potential

• Given
$$ho \geqslant$$
 0, $\int
ho = N$, $k \in \mathbb{N}$, find v such that $ho_{\Psi^{(k)}(v)} =
ho$.

Figure: Density ρ and its inverse ν , for N = 3 and k = 2

Introduction The dual problem Numerical inversion The dual problem

Inverse potential

• Given
$$ho \geqslant$$
 0, $\int
ho = N$, $k \in \mathbb{N}$, find v such that $ho_{\Psi^{(k)}(v)} =
ho$.

Figure: Density ρ and its inverse ν , for N = 3 and k = 2

Existence/uniqueness ?

Introduction The dual problem Numerical inversion The setting and the objective Properties of the direct map III-posedness Literature

Why finding inverse potentials ?

• Finding effective models in DFT

 Introduction
 The setting and the objective

 The dual problem
 Properties of the direct map

 Numerical inversion
 Ill-posedness

 Literature
 Literature

Why finding inverse potentials ?

• Finding effective models in DFT

• Control theory

Introduction The dual problem Numerical inversion The dual problem Numerical inversion The setting and the objective Properties of the direct map Ill-posedness Literature

Why finding inverse potentials ?

• Finding effective models in DFT

- Control theory
- Mathematical understanding of DFT

Introduction The dual problem Numerical inversion The dual problem Numerical inversion The setting and the objective Properties of the direct map Ill-posedness Literature

Why finding inverse potentials ?

• Finding effective models in DFT

- Control theory
- Mathematical understanding of DFT
- Optimal Effective Potential

Questions

DFT map:
$$v \mapsto
ho_{\Psi^{(k)}(v)} =
ho^{(k)}(v)$$

$$\rho^{(k)}(\mathbf{v}_{\rho}) = \rho$$

Questions

DFT map:
$$v \mapsto
ho_{\Psi^{(k)}(v)} =
ho^{(k)}(v)$$

Given $\rho \ge 0$, $\int \rho = N$, we search v_{ρ} such that

$$\rho^{(k)}(\mathbf{v}_{\rho}) = \rho$$

• Definition set ?

Questions

DFT map:
$$v \mapsto
ho_{\Psi^{(k)}(v)} =
ho^{(k)}(v)$$

$$\rho^{(k)}(\mathbf{v}_{\rho}) = \rho$$

- Definition set ?
- Injective ?

Questions

DFT map:
$$v \mapsto
ho_{\Psi^{(k)}(v)} =
ho^{(k)}(v)$$

$$\rho^{(k)}(\mathbf{v}_{\rho}) = \rho$$

- Definition set ?
- Injective ?
- Image ? Is it dense ? The answer will be different for pure and mixed states

Questions

DFT map:
$$v \mapsto \rho_{\Psi^{(k)}(v)} = \rho^{(k)}(v)$$

$$\rho^{(k)}(\mathbf{v}_{\rho}) = \rho$$

- Definition set ?
- Injective ?
- Image ? Is it dense ? The answer will be different for pure and mixed states
- Inverse problem well-posed ?

Questions

DFT map:
$$v \mapsto \rho_{\Psi^{(k)}(v)} = \rho^{(k)}(v)$$

$$\rho^{(k)}(\mathbf{v}_{\rho}) = \rho$$

- Definition set ?
- Injective ?
- Image ? Is it dense ? The answer will be different for pure and mixed states
- Inverse problem well-posed ?
- Inverting algorithm ?

The setting and the objective Properties of the direct map Ill-posedness Literature

Table of contents

- The setting and the objective
- Properties of the direct map
- Ill-posedness
- Literature
- 2 The dual problem
 - Optimality properties
 - Regularization
- 3 Numerical inversion
 - The local problem
 - Graphs
 - What we learn

The setting and the objective Properties of the direct map Ill-posedness Literature

The definition set

$$\begin{aligned} \mathcal{V}_{N,\partial}^{(0)} &= \left\{ v \in L^p + L^{\infty} \mid E_N^{(0)}(v) < \inf \sigma_{\mathrm{ess}}(H_N(v)) \right\} \\ \mathcal{V}_N^{(0)} &:= \mathcal{V}_{N,\partial}^{(0)} \cap \left\{ v \mid \dim \left(H_N(v) - E_N^{(0)}(v) \right) = 1 \right\}, \end{aligned}$$

The setting and the objective Properties of the direct map Ill-posedness Literature

The definition set

$$\begin{aligned} \mathcal{V}_{N,\partial}^{(0)} &= \left\{ v \in L^p + L^{\infty} \mid E_N^{(0)}(v) < \inf \sigma_{\mathrm{ess}}(H_N(v)) \right\} \\ \mathcal{V}_N^{(0)} &:= \mathcal{V}_{N,\partial}^{(0)} \cap \left\{ v \mid \dim \left(H_N(v) - E_N^{(0)}(v) \right) = 1 \right\}, \end{aligned}$$

Theorem (Path-connectedness of the space of binding potentials)

$$\cap_{i=1}^{N} \mathcal{V}_{i,\partial}^{(0)}$$
 is path-connected

The setting and the objective Properties of the direct map Ill-posedness Literature

The definition set

$$\begin{aligned} \mathcal{V}_{N,\partial}^{(0)} &= \left\{ v \in L^p + L^{\infty} \mid E_N^{(0)}(v) < \inf \sigma_{\mathrm{ess}}(H_N(v)) \right\} \\ \mathcal{V}_N^{(0)} &:= \mathcal{V}_{N,\partial}^{(0)} \cap \left\{ v \mid \dim \left(H_N(v) - E_N^{(0)}(v) \right) = 1 \right\}, \end{aligned}$$

Theorem (Path-connectedness of the space of binding potentials)

$$\cap_{i=1}^{N}\mathcal{V}_{i,\partial}^{(0)}$$
 is path-connected

• Conjecture : $\mathcal{V}_{i+1,\partial}^{(0)} \subset \mathcal{V}_{i,\partial}^{(0)}$. Would yield $\mathcal{V}_{N,\partial}^{(0)} = \cap_{i=1}^{N} \mathcal{V}_{i,\partial}^{(0)}$

The setting and the objective Properties of the direct map Ill-posedness Literature

The definition set

$$\begin{aligned} \mathcal{V}_{N,\partial}^{(0)} &= \left\{ v \in L^p + L^{\infty} \mid E_N^{(0)}(v) < \inf \sigma_{\mathrm{ess}}(H_N(v)) \right\} \\ \mathcal{V}_N^{(0)} &:= \mathcal{V}_{N,\partial}^{(0)} \cap \left\{ v \mid \dim \left(H_N(v) - E_N^{(0)}(v) \right) = 1 \right\}, \end{aligned}$$

Theorem (Path-connectedness of the space of binding potentials)

$$\cap_{i=1}^{N} \mathcal{V}_{i,\partial}^{(0)}$$
 is path-connected

• Conjecture :
$$\mathcal{V}_{i+1,\partial}^{(0)} \subset \mathcal{V}_{i,\partial}^{(0)}$$
. Would yield $\mathcal{V}_{N,\partial}^{(0)} = \cap_{i=1}^{N} \mathcal{V}_{i,\partial}^{(0)}$

Corollary (Path-connectedness of the set *v*-representable densities)
The set
$$\rho^{(0)}\left(\bigcap_{i=1}^{N} \mathcal{V}_{i,\partial}^{(0)}\right)$$
 is path-connected

The setting and the objective Properties of the direct map Ill-posedness Literature

Injectivity

Theorem (Hohenberg-Kohn, 1964)

Let $w, v_1, v_2 \in L^{p>\max(2,2d/3)}(\mathbb{R}^d) + L^{\infty}(\mathbb{R}^d)$. If there are two ground states Ψ_1 and Ψ_2 of $H_N(v_1)$ and $H_N(v_2)$, such that

$$\rho_{\Psi_1}=\rho_{\Psi_2},$$

then $v_1 = v_2 + \frac{E_1 - E_2}{N}$.

The setting and the objective Properties of the direct map Ill-posedness Literature

Compactness of $v \mapsto \rho^{(0)}(v)$

Theorem (Main properties of $\Psi^{(0)}$)

•
$$v \mapsto \Psi^{(k)}(v)$$
 is \mathcal{C}^{∞} from $\mathcal{V}_{N}^{(k)}$ to \mathcal{H}_{p}^{1}

The setting and the objective Properties of the direct map Ill-posedness Literature

Compactness of $v \mapsto \rho^{(0)}(v)$

Theorem (Main properties of $\Psi^{(0)}$)

- $v \mapsto \Psi^{(k)}(v)$ is \mathcal{C}^{∞} from $\mathcal{V}_N^{(k)}$ to H^1_p
- For $v \in \mathcal{V}_N^{(k)}$, $\mathrm{d}_v \Psi^{(k)} : L^{d/2} + L^\infty \to H^1 \cap \left\{ \Psi^{(k)}(v) \right\}^\perp$

$$\left(\mathrm{d}_{v}\Psi^{(k)}\right)u=-\left(H_{N}(v)-E_{N}^{(k)}(v)\right)_{\perp}^{-1}\left(\Sigma_{i=1}^{N}u(x_{i})\right)\Psi^{(k)}(v),$$

 $\mathrm{d}_v \Psi^{(k)}$ is compact

The setting and the objective Properties of the direct map Ill-posedness Literature

Compactness of $v \mapsto \rho^{(0)}(v)$

Theorem (Main properties of $\Psi^{(0)}$)

- $v\mapsto \Psi^{(k)}(v)$ is \mathcal{C}^∞ from $\mathcal{V}^{(k)}_N$ to H^1_p
- For $v \in \mathcal{V}_N^{(k)}$, $\mathrm{d}_v \Psi^{(k)} : L^{d/2} + L^\infty \to H^1 \cap \left\{ \Psi^{(k)}(v) \right\}^\perp$

$$\left(\mathrm{d}_{v} \Psi^{(k)} \right) u = - \left(H_{N}(v) - E_{N}^{(k)}(v) \right)_{\perp}^{-1} \left(\sum_{i=1}^{N} u(x_{i}) \right) \Psi^{(k)}(v),$$

$\mathrm{d}_{v}\Psi^{(k)}$ is compact

• Let $\Lambda \subset \mathbb{R}^d$ be a bounded open set. Assume $v \in \mathcal{V}_N^{(0)}$, $v_n \rightharpoonup v$ and $v_n \mathbb{1}_{\mathbb{R}^d \setminus \Lambda} \to v \mathbb{1}_{\mathbb{R}^d \setminus \Lambda}$ in $L^{p > \frac{d}{2}} + L^{\infty}$. Then $E_N^{(0)}(v_n) \to E_N^{(0)}(v)$, $v_n \in \mathcal{V}_N^{(0)}$ for n large enough, and $\Psi^{(0)}(v_n) \to \Psi^{(0)}(v)$ in H^1

The setting and the objective Properties of the direct map III-posedness Literature

Table of contents

1 Introduction

- The setting and the objectiveProperties of the direct map
- Ill-posedness
- Literature
- 2 The dual problem
 - Optimality properties
 - Regularization
- 3 Numerical inversion
 - The local problem
 - Graphs
 - What we learn

The setting and the objective Properties of the direct map III-posedness Literature

Ill-posedness of the inversion

Theorem (The set of *v*-representable densities is very small)

Consider that the system lives in a bounded open set
$$\Omega \subset \mathbb{R}^d$$
.
Then $L^{p>d/2} \ni v \mapsto \rho^{(0)}(v) \in W^{1,1}$ is compact, $(\rho^{(0)})^{-1}$ is
discontinuous, and $\rho^{(0)}(\mathcal{V}_N^{(0)})$ has empty interior in
 $W^{1,1} \cap \{ \int \cdot = N \}.$

The setting and the objective Properties of the direct map III-posedness Literature

Ill-posedness of the inversion

Theorem (The set of *v*-representable densities is very small)

Consider that the system lives in a bounded open set
$$\Omega \subset \mathbb{R}^d$$
.
Then $L^{p>d/2} \ni v \mapsto \rho^{(0)}(v) \in W^{1,1}$ is compact, $(\rho^{(0)})^{-1}$ is
discontinuous, and $\rho^{(0)}(\mathcal{V}_N^{(0)})$ has empty interior in
 $W^{1,1} \cap \{ \int \cdot = N \}.$

The inverse problem is ill-posed !

The setting and the objective Properties of the direct map III-posedness Literature

Inverse continuity

Proposition (Weak inverse continuity of Ψ)

Let
$$p > \max(2d/3, 2)$$
, $v, v_n \in \mathcal{V}_{N,\partial}^{(k)}$ such that $v_n - E_N^{(k)}(v_n)/N$ is
bounded in $L^p + L^{\infty}$ and $\Psi^{(k)}(v_n) \to \Psi^{(k)}(v)$ in $H^2(\mathbb{R}^{dN})$. Then
 $v_n \to v$ a.e. up to a subsequence.

The setting and the objective Properties of the direct map III-posedness Literature

Table of contents

Introduction

- The setting and the objective
- Properties of the direct map
- Ill-posedness
- Literature
- 2 The dual problem
 - Optimality properties
 - Regularization
- 3 Numerical inversion
 - The local problem
 - Graphs
 - What we learn

Introduction The dual problem Numerical inversion	The setting and the objective Properties of the direct map III-posedness Literature
---	--

Target ρ : we search v such that

- $ho_{\Psi^{(k)}(v)} =
 ho$ for pure states, $\Psi^{(k)}(v) \in \operatorname{Ker}\left(H_N(v) E_N^{(k)}(v)\right)$
- $\rho_{\Gamma^{(k)}(v)} = \rho$ for mixed states, Ran $\Gamma^{(k)}(v) \subset \operatorname{Ker}\left(H_N(v) - E_N^{(k)}(v)\right)$

The setting and the objective Properties of the direct map III-posedness Literature

Target ρ : we search v such that

• $\rho_{\Psi^{(k)}(v)} = \rho$ for pure states, $\Psi^{(k)}(v) \in \operatorname{Ker}\left(H_N(v) - E_N^{(k)}(v)\right)$ • $\rho_{\Gamma^{(k)}(v)} = \rho$ for mixed states, Ran $\Gamma^{(k)}(v) \subset \operatorname{Ker}\left(H_N(v) - E_N^{(k)}(v)\right)$ $\left\{\rho_{\Psi^{(k)}} \mid \Psi^{(k)} \in \operatorname{Ker}\left(H_N(v) - E_N^{(k)}(v)\right), \left\|\Psi^{(k)}\right\|_{L^2} = 1\right\}$ $\subset \left\{\rho_{\Gamma^{(k)}} \mid \operatorname{Ran}\Gamma^{(k)} \subset \operatorname{Ker}\left(H_N(v) - E_N^{(k)}(v)\right), \operatorname{Tr}\Gamma^{(k)} = 1\right\}$

The setting and the objective Properties of the direct map III-posedness Literature

Target ρ : we search v such that

• $\rho_{\Psi^{(k)}(v)} = \rho$ for pure states, $\Psi^{(k)}(v) \in \operatorname{Ker} \left(H_N(v) - E_N^{(k)}(v) \right)$ • $\rho_{\Gamma^{(k)}(v)} = \rho$ for mixed states, Ran $\Gamma^{(k)}(v) \subset \operatorname{Ker} \left(H_N(v) - E_N^{(k)}(v) \right)$ $\left\{ \rho_{\Psi^{(k)}} \mid \Psi^{(k)} \in \operatorname{Ker} \left(H_N(v) - E_N^{(k)}(v) \right), \left\| \Psi^{(k)} \right\|_{L^2} = 1 \right\}$ $\subset \left\{ \rho_{\Gamma^{(k)}} \mid \operatorname{Ran} \Gamma^{(k)} \subset \operatorname{Ker} \left(H_N(v) - E_N^{(k)}(v) \right), \operatorname{Tr} \Gamma^{(k)} = 1 \right\}$

Inverse problem solved for

Introduction The dual problem Numerical inversion	The setting and the objective Properties of the direct map III-posedness Literature
---	--

Target ρ : we search v such that

- $\rho_{\Psi^{(k)}(v)} = \rho$ for pure states, $\Psi^{(k)}(v) \in \operatorname{Ker}\left(H_N(v) E_N^{(k)}(v)\right)$
- $\rho_{\Gamma^{(k)}(v)} = \rho$ for mixed states, Ran $\Gamma^{(k)}(v) \subset \operatorname{Ker}\left(H_N(v) - E_N^{(k)}(v)\right)$

$$\begin{split} &\left\{ \rho_{\Psi^{(k)}} \mid \Psi^{(k)} \in \mathsf{Ker}\left(\mathcal{H}_{\mathcal{N}}(v) - \mathcal{E}_{\mathcal{N}}^{(k)}(v) \right), \left\| \Psi^{(k)} \right\|_{L^{2}} = 1 \right\} \\ & \subset \left\{ \rho_{\Gamma^{(k)}} \mid \mathsf{Ran}\,\Gamma^{(k)} \subset \mathsf{Ker}\left(\mathcal{H}_{\mathcal{N}}(v) - \mathcal{E}_{\mathcal{N}}^{(k)}(v) \right), \mathrm{Tr}\,\Gamma^{(k)} = 1 \right\} \end{split}$$

Inverse problem solved for

• approximate invertibility with mixed states for k = 0 (Lieb 1983)

The setting and the objective Properties of the direct map III-posedness Literature

Target ρ : we search v such that

- $\rho_{\Psi^{(k)}(v)} = \rho$ for pure states, $\Psi^{(k)}(v) \in \operatorname{Ker}\left(H_N(v) E_N^{(k)}(v)\right)$
- $\rho_{\Gamma^{(k)}(v)} = \rho$ for mixed states, Ran $\Gamma^{(k)}(v) \subset \operatorname{Ker}\left(H_N(v) - E_N^{(k)}(v)\right)$

$$\begin{split} &\left\{ \rho_{\Psi^{(k)}} \mid \Psi^{(k)} \in \mathsf{Ker}\left(\mathcal{H}_{\mathcal{N}}(v) - \mathcal{E}_{\mathcal{N}}^{(k)}(v) \right), \left\| \Psi^{(k)} \right\|_{L^{2}} = 1 \right\} \\ & \subset \left\{ \rho_{\Gamma^{(k)}} \mid \operatorname{\mathsf{Ran}} \Gamma^{(k)} \subset \operatorname{\mathsf{Ker}}\left(\mathcal{H}_{\mathcal{N}}(v) - \mathcal{E}_{\mathcal{N}}^{(k)}(v) \right), \operatorname{Tr} \Gamma^{(k)} = 1 \right\} \end{split}$$

Inverse problem solved for

- approximate invertibility with mixed states for k = 0 (Lieb 1983)
- classical systems at T > 0 (Chayes Chayes Lieb 1984)

The setting and the objective Properties of the direct map III-posedness Literature

Target ρ : we search v such that

- $\rho_{\Psi^{(k)}(v)} = \rho$ for pure states, $\Psi^{(k)}(v) \in \operatorname{Ker}\left(H_N(v) E_N^{(k)}(v)\right)$
- $\rho_{\Gamma^{(k)}(v)} = \rho$ for mixed states, Ran $\Gamma^{(k)}(v) \subset \operatorname{Ker}\left(H_N(v) - E_N^{(k)}(v)\right)$

$$\begin{split} &\left\{ \rho_{\Psi^{(k)}} \mid \Psi^{(k)} \in \mathsf{Ker}\left(\mathcal{H}_{N}(v) - \mathcal{E}_{N}^{(k)}(v) \right), \left\| \Psi^{(k)} \right\|_{L^{2}} = 1 \right\} \\ & \subset \left\{ \rho_{\Gamma^{(k)}} \mid \operatorname{\mathsf{Ran}} \Gamma^{(k)} \subset \operatorname{\mathsf{Ker}}\left(\mathcal{H}_{N}(v) - \mathcal{E}_{N}^{(k)}(v) \right), \operatorname{Tr} \Gamma^{(k)} = 1 \right\} \end{split}$$

Inverse problem solved for

- approximate invertibility with mixed states for k = 0 (Lieb 1983)
- classical systems at T > 0 (Chayes Chayes Lieb 1984)
- quantum systems on lattices for k = 0 for mixed states (Chayes Chayes Ruskai 1985)

Optimality properties Regularization

Table of contents

Introduction

- The setting and the objective
- Properties of the direct map
- Ill-posedness
- Literature

2 The dual problem

- Optimality properties
- Regularization
- 3 Numerical inversion
 - The local problem
 - Graphs
 - What we learn

Optimality properties Regularization

Table of contents

Introduction

- The setting and the objective
- Properties of the direct map
- Ill-posedness
- Literature
- 2 The dual problem
 - Optimality properties
 - Regularization
- 3 Numerical inversion
 - The local problem
 - Graphs
 - What we learn

Optimality properties Regularization

Dual optimality

$$G^{(k)}_{
ho}(\mathbf{v}) \coloneqq E^{(k)}_{N}(\mathbf{v}) - \int_{\mathbb{R}^d} \mathbf{v}
ho,$$

$$\sup_{\nu \in L^p(\mathbb{R}^d)} G^{(0)}_{\rho}(\nu) = F_{\mathsf{L}}(\rho)$$

Optimality properties Regularization

Dual optimality

$$G^{(k)}_{
ho}(\mathbf{v}) \coloneqq E^{(k)}_{N}(\mathbf{v}) - \int_{\mathbb{R}^d} \mathbf{v}
ho,$$

$$\sup_{v\in L^p(\mathbb{R}^d)}G^{(0)}_\rho(v)=F_{\mathsf{L}}(\rho)$$

•
$$G_{\rho}^{(k)}(v+c) = G_{\rho}^{(k)}(v)$$

Optimality properties Regularization

Dual optimality

$$G^{(k)}_{
ho}(v) \coloneqq E^{(k)}_{N}(v) - \int_{\mathbb{R}^d} v
ho,$$

$$\sup_{v\in L^p(\mathbb{R}^d)}G^{(0)}_{\rho}(v)=F_{\mathsf{L}}(\rho)$$

•
$$G_{\rho}^{(k)}(v+c) = G_{\rho}^{(k)}(v)$$

• Concave for k = 0

Optimality properties Regularization

Dual optimality

$$\mathcal{G}^{(k)}_{
ho}(\mathbf{v}) \coloneqq \mathcal{E}^{(k)}_{N}(\mathbf{v}) - \int_{\mathbb{R}^d} \mathbf{v}
ho,$$

$$\sup_{v\in L^p(\mathbb{R}^d)}G^{(0)}_\rho(v)=F_{\mathsf{L}}(\rho)$$

•
$$G_{\rho}^{(k)}(v+c) = G_{\rho}^{(k)}(v)$$

- Concave for k = 0
- On degenerate potentials, v → ρ_{Ψ^(k)(v)} and E^(k)_N are not differentiable

Optimality properties Regularization

Dual optimality

$$G^{(k)}_{
ho}(v) \coloneqq E^{(k)}_N(v) - \int_{\mathbb{R}^d} v
ho$$

Theorem (Optimality in the dual problem)

Optimality properties Regularization

Dual optimality

$$G^{(k)}_{
ho}(\mathbf{v}) \mathrel{\mathop:}= E^{(k)}_{N}(\mathbf{v}) - \int_{\mathbb{R}^d} \mathbf{v}
ho$$

Theorem (Optimality in the dual problem)

Take $\rho \ge 0$, $v \in \mathcal{V}_{N,\partial}^{(k)}$. i) Are equivalent:

- there is a k^{th} bound mixed state Γ of v such that $\rho_{\Gamma} = \rho$
- v is a local maximizer of $G_{\rho}^{(k)}$
- v is a global maximizer of $G_{\rho}^{(k)}$

Optimality properties Regularization

Dual optimality

$$G^{(k)}_{
ho}(\mathbf{v}) \mathrel{\mathop:}= E^{(k)}_{N}(\mathbf{v}) - \int_{\mathbb{R}^d} \mathbf{v}
ho$$

Theorem (Optimality in the dual problem)

Take
$$\rho \ge 0$$
, $v \in \mathcal{V}_{N,\partial}^{(k)}$.
i) Are equivalent:

- there is a $k^{\rm th}$ bound mixed state Γ of v such that $\rho_{\Gamma}=\rho$
- v is a local maximizer of $G_{\rho}^{(k)}$
- v is a global maximizer of $G_{\rho}^{(k)}$

ii) If v maximizes $G_{\rho}^{(k)}$ and

- dim Ker $(H_N(v) E_N^{(k)}(v)) \in \{1, 2\},\$
- or *d* = 1 and *w* = 0,

then v has a k^{th} bound pure state Ψ such that $\rho_{\Psi} = \rho$.

Optimality properties Regularization

Dual optimality

$$G^{(k)}_{
ho}(\mathbf{v}) \mathrel{\mathop:}= E^{(k)}_{N}(\mathbf{v}) - \int_{\mathbb{R}^d} \mathbf{v}
ho$$

Theorem (Optimality in the dual problem)

Take
$$\rho \ge 0$$
, $v \in \mathcal{V}_{N,\partial}^{(k)}$.
i) Are equivalent:

- there is a $k^{\rm th}$ bound mixed state Γ of v such that $\rho_{\Gamma}=\rho$
- v is a local maximizer of $G_{\rho}^{(k)}$
- v is a global maximizer of $G_{\rho}^{(k)}$

ii) If v maximizes $G_{\rho}^{(k)}$ and

- dim Ker $(H_N(v) E_N^{(k)}(v)) \in \{1, 2\},\$
- or *d* = 1 and *w* = 0,

then v has a kth bound pure state Ψ such that $\rho_{\Psi} = \rho$.

Does a maximum exist ?

Optimality properties Regularization

Table of contents

Introduction

- The setting and the objective
- Properties of the direct map
- Ill-posedness
- Literature

2 The dual problem

• Optimality properties

Regularization

3 Numerical inversion

- The local problem
- Graphs
- What we learn

Optimality properties Regularization

Regularization

•
$$G_{\rho}^{(k)}(v) = E_{N}^{(k)}(v) - \int v\rho$$
 is not coercive in L^{p} ! Ex:
 $v \in L^{1} \cap L^{p>1}, v \ge 0, v_{n}(x) := n^{d}v(nx),$
 $\|v_{n}\|_{L^{p}}^{p} = n^{d(p-1)} \int v^{p} \to +\infty$ but $E_{N}^{(k)}(v_{n}) = 0$, and
 $\int v_{n}\rho \to \rho(0) \int v$ is bounded

Optimality properties Regularization

Regularization

•
$$G_{\rho}^{(k)}(v) = E_{N}^{(k)}(v) - \int v\rho \text{ is not coercive in } L^{p} ! \text{ Ex :}$$

 $v \in L^{1} \cap L^{p>1}, v \ge 0, v_{n}(x) := n^{d}v(nx),$
 $\|v_{n}\|_{L^{p}}^{p} = n^{d(p-1)} \int v^{p} \to +\infty \text{ but } E_{N}^{(k)}(v_{n}) = 0, \text{ and}$
 $\int v_{n}\rho \to \rho(0) \int v \text{ is bounded}$
• Dual : restriction to potentials $V = \sum_{i \in I} v_{i}\alpha_{i},$
 $v \in (v_{i})_{i \in I} \in \ell^{\infty}(I, \mathbb{R}), \alpha_{i} \in L^{\infty}(\Omega), \sum_{i \in I} \alpha_{i} = \mathbb{1}_{\Omega}, r_{i} \in \mathbb{R}_{+},$
 $r_{i} = \int \rho\alpha_{i}, \sum_{i \in I} r_{i} = N$
 $G_{r,\alpha}^{(k)}(v) := E_{N}^{(k)} \left(\sum_{i \in I} v_{i}\alpha_{i}\right) - \sum_{i \in I} v_{i}r_{i},$

Optimality properties Regularization

Coercivity

$$G_{r,\alpha}^{(k)}(v) \leqslant -\frac{\min r}{N} \|v\|_{\ell^1} + c,$$

Optimality properties Regularization

Coercivity

$$G_{r,\alpha}^{(k)}(v) \leqslant -\frac{\min r}{N} \|v\|_{\ell^1} + c,$$

Theorem (Existence of the inverse potential)

When I is finite $G_{r,\alpha}^{(k)}$ is coercive and there exists a maximizer v. If $\Omega \subset \mathbb{R}^d$ is bounded, there is a k^{th} excited N-particle ground mixed state Γ_v of $H_N\left(\sum_{i\in I} v_i\alpha_i\right)$ such that $\int \alpha_i\rho_{\Gamma_v} = r_i \ (=\int \alpha_i\rho) \ \forall i$.

Optimality properties Regularization

Coercivity

$$G_{r,\alpha}^{(k)}(v) \leqslant -\frac{\min r}{N} \|v\|_{\ell^1} + c,$$

Theorem (Existence of the inverse potential)

When I is finite $G_{r,\alpha}^{(k)}$ is coercive and there exists a maximizer v. If $\Omega \subset \mathbb{R}^d$ is bounded, there is a k^{th} excited N-particle ground mixed state Γ_v of $H_N\left(\sum_{i\in I} v_i\alpha_i\right)$ such that $\int \alpha_i\rho_{\Gamma_v} = r_i \ (=\int \alpha_i\rho) \ \forall i$.

• Constructive inversion with mixed states

For a given k, ρ , $\varepsilon > 0$, there exists a potential v and Γ_v with $\operatorname{Ran} \Gamma_v \subset \operatorname{Ker} \left(H_N(v) - E_N^{(k)}(v) \right)$ such that $\|\rho_{\Gamma_v} - \rho\|_{L^1 \cap L^q} \leqslant \varepsilon$. The state can be chosen to be **pure** when d = 1 and w = 0.

The local problem Graphs What we learn

Table of contents

Introduction

- The setting and the objective
- Properties of the direct map
- Ill-posedness
- Literature
- 2 The dual problem
 - Optimality properties
 - Regularization

3 Numerical inversion

- The local problem
- Graphs
- What we learn

The local problem Graphs What we learn

Table of contents

Introduction

- The setting and the objective
- Properties of the direct map
- Ill-posedness
- Literature
- 2 The dual problem
 - Optimality properties
 - Regularization
- 3 Numerical inversion
 - The local problem
 - Graphs
 - What we learn

The local problem Graphs What we learn

"Gradient" ascent

Minimize
$$J(v) := \int_{\mathbb{R}^d} \left(\rho_{\Psi^{(k)}(v)} - \rho \right)^2$$
?

The local problem Graphs What we learn

"Gradient" ascent

Minimize
$$J(v) := \int_{\mathbb{R}^d} \left(\rho_{\Psi^{(k)}(v)} - \rho \right)^2$$
?
Second idea, maximize

$$\mathcal{G}^{(k)}_
ho(v):=\mathcal{E}^{(k)}_N(v)-\int_{\mathbb{R}^d}v
ho$$

The local problem Graphs What we learn

Local dual problem

$${}^{+}\delta_{v}G_{\rho}^{(k)}(u) = \max_{\substack{\Psi_{0},...,\Psi_{M_{k}-k}\in\mathsf{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right)\\ \|\Psi_{i}\|=1,\Psi_{i}\perp\Psi_{j}}}\min_{\substack{\lambda_{i}\in\mathbb{C},\sum_{i}|\lambda_{i}|^{2}=1\\ 0\leqslant i,j\leqslant M_{k}-k}}\int\left(\rho_{\Psi}-\rho\right)u$$

The local problem Graphs What we learn

Local dual problem

$${}^{+}\delta_{v}G_{\rho}^{(k)}(u) = \max_{\substack{\Psi_{0},...,\Psi_{M_{k}-k}\in\mathsf{Ker}\left(H_{N}(v)-E_{N}^{(k)}(v)\right)\\ \|\Psi_{i}\|=1,\Psi_{i}\perp\Psi_{j}}}\min_{\substack{\lambda_{i}\in\mathbb{C},\sum_{i}|\lambda_{i}|^{2}=1\\ 0\leqslant i,j\leqslant M_{k}-k}}\int\left(\rho_{\Psi}-\rho\right)u$$

Proposition (Local dual problem)

Take
$$w \ge 0$$
, $v \in \mathcal{V}_{N,\partial}^{(k)}$. We have

$$\sup_{\substack{u \in L^{p} + L^{\infty} \\ \|u\|_{L^{p} + L^{\infty}} = 1}} \frac{\delta_{\nu} G_{\rho}^{(k)}(u)}{\operatorname{QCKer}_{\mathbb{R}}(H_{N}(v) - E_{N}^{(k)}(v))} \min_{\substack{\Gamma \in \mathcal{S}(Q) \\ \Gamma \geqslant 0, \operatorname{Tr} \Gamma = 1}} \|\rho_{\Gamma} - \rho\|_{L^{p'}},$$

and the supremum is attained by $u^* = \left| \frac{\rho_{\Gamma^*} - \rho}{\|\rho_{\Gamma^*} - \rho\|_{L^{p'}}} \right|^{p'-1} \operatorname{sgn}(\rho_{\Gamma^*} - \rho)$, where Γ^* is an optimizer of the right hand side.

The local problem Graphs What we learn

"Gradient" ascent

Maximize

$$\mathcal{G}^{(k)}_
ho({m v}):=\mathcal{E}^{(k)}_N({m v})-\int_{\mathbb{R}^d}{m v}
ho$$

The local problem Graphs What we learn

"Gradient" ascent

Maximize

$$G^{(k)}_
ho(
u):=E^{(k)}_N(
u)-\int_{\mathbb{R}^d}
u
ho$$

• Grid discretization \mathbb{Z}^d

The local problem Graphs What we learn

"Gradient" ascent

$$G^{(k)}_
ho(
u):=E^{(k)}_N(
u)-\int_{\mathbb{R}^d}
u
ho$$

- Grid discretization \mathbb{Z}^d
- Consider a target $\rho \ge 0$, $\int \rho = N$

The local problem Graphs What we learn

"Gradient" ascent

$$G^{(k)}_
ho(
u):=E^{(k)}_N(
u)-\int_{\mathbb{R}^d}
u
ho$$

- Grid discretization \mathbb{Z}^d
- Consider a target $\rho \ge 0$, $\int \rho = N$
- Start from Bohm's potential $v_0 = \frac{\Delta \sqrt{\rho}}{\sqrt{\rho}}$

The local problem Graphs What we learn

"Gradient" ascent

$$G^{(k)}_
ho(
u):=E^{(k)}_N(
u)-\int_{\mathbb{R}^d}
u
ho$$

- Grid discretization \mathbb{Z}^d
- Consider a target $\rho \ge 0$, $\int \rho = N$
- Start from Bohm's potential $v_0 = \frac{\Delta \sqrt{
 ho}}{\sqrt{
 ho}}$

• Iterate
$$v_{n+1} = v_n + \alpha u^*$$

 $+ \delta_v G_{\rho}^{(k)}(u^*) = \max_{\|u\|=1} + \delta_v G_{\rho}^{(k)}(u) > 0$

The local problem Graphs What we learn

"Gradient" ascent

Maximize

$$G^{(k)}_
ho(
u):=E^{(k)}_N(
u)-\int_{\mathbb{R}^d}
u
ho$$

- Grid discretization \mathbb{Z}^d
- Consider a target $\rho \geqslant 0$, $\int \rho = N$
- Start from Bohm's potential $v_0 = \frac{\Delta \sqrt{
 ho}}{\sqrt{
 ho}}$

• Iterate
$$v_{n+1} = v_n + \alpha u^*$$

 $+ \delta_v G_{\rho}^{(k)}(u^*) = \max_{\|u\|=1} + \delta_v G_{\rho}^{(k)}(u) > 0$

• Line search for α , temperature

The local problem Graphs What we learn

"Gradient" ascent

$$G^{(k)}_
ho(
u):=E^{(k)}_N(
u)-\int_{\mathbb{R}^d}
u
ho$$

- Grid discretization \mathbb{Z}^d
- Consider a target $\rho \geqslant 0$, $\int \rho = N$
- Start from Bohm's potential $v_0 = \frac{\Delta \sqrt{
 ho}}{\sqrt{
 ho}}$

• Iterate
$$v_{n+1} = v_n + \alpha u^*$$

 $+ \delta_v G_{\rho}^{(k)}(u^*) = \max_{\|u\|=1} + \delta_v G_{\rho}^{(k)}(u) > 0$

- Line search for α , temperature
- Convergence criterion: $\|\rho^{(k)}(v_n) \rho\|_{L^1} / N \leq \varepsilon$

The local problem Graphs What we learn

Goal

What we know

• Approximate inversion with mixed states for any \boldsymbol{k}

The local problem Graphs What we learn

Goal

What we know

- Approximate inversion with mixed states for any k
- When d = 1, the set of pure state densities

$$\begin{split} \left\{ \begin{split} \rho_{\Psi_{v}^{(k)}} & \left| \ v \in (L^{p} + L^{\infty})(\Omega), \right. \\ & \Psi_{v}^{(k)} \in \operatorname{Ker} \left(H_{N}^{w=0}(v) - E_{N}^{(k)}(v) \right), \int_{\Omega^{N}} \left| \Psi_{v}^{(k)} \right|^{2} = 1 \right\} \end{split}$$

is dense for the $L^1 \cap L^q$ norm

The local problem Graphs What we learn

Goal

What we know

- Approximate inversion with mixed states for any k
- When d = 1, the set of pure state densities

$$\begin{split} \left\{ \begin{split} \rho_{\Psi_{\nu}^{(k)}} & \left| \ v \in (L^{p} + L^{\infty})(\Omega), \right. \\ & \Psi_{\nu}^{(k)} \in \operatorname{Ker} \left(H_{N}^{w=0}(\nu) - E_{N}^{(k)}(\nu) \right), \int_{\Omega^{N}} \left| \Psi_{\nu}^{(k)} \right|^{2} = 1 \right\} \end{split}$$

is dense for the $L^1 \cap L^q$ norm

• When d = 3, it's not (uses Lieb 83)

The local problem Graphs What we learn

Goal

What we know

- Approximate inversion with mixed states for any k
- When d = 1, the set of pure state densities

$$\begin{split} \left\{ \begin{split} \rho_{\Psi_{\nu}^{(k)}} & \left| \ v \in (L^{p} + L^{\infty})(\Omega), \right. \\ & \Psi_{\nu}^{(k)} \in \operatorname{Ker} \left(H_{N}^{w=0}(\nu) - E_{N}^{(k)}(\nu) \right), \int_{\Omega^{N}} \left| \Psi_{\nu}^{(k)} \right|^{2} = 1 \right\} \end{split}$$

is dense for the $L^1 \cap L^q$ norm

• When d = 3, it's not (uses Lieb 83)

What we want to know

The local problem Graphs What we learn

Goal

What we know

.

- Approximate inversion with mixed states for any k
- When d = 1, the set of pure state densities

$$\begin{split} \left\{ \begin{split} \rho_{\Psi_{v}^{(k)}} & \left| \ v \in (L^{p} + L^{\infty})(\Omega), \right. \\ & \Psi_{v}^{(k)} \in \mathsf{Ker}\left(H_{N}^{w=0}(v) - E_{N}^{(k)}(v)\right), \int_{\Omega^{N}} \left|\Psi_{v}^{(k)}\right|^{2} = 1 \right\} \end{split}$$

is dense for the $L^1 \cap L^q$ norm

• When d = 3, it's not (uses Lieb 83)

What we want to know

• Uniqueness for $k \ge 1$?

The local problem Graphs What we learn

Goal

What we know

.

- Approximate inversion with mixed states for any k
- When d = 1, the set of pure state densities

$$\begin{split} \left\{ \begin{split} \rho_{\Psi_{v}^{(k)}} & \left| \ v \in (L^{p} + L^{\infty})(\Omega), \right. \\ & \Psi_{v}^{(k)} \in \mathsf{Ker}\left(H_{N}^{w=0}(v) - E_{N}^{(k)}(v)\right), \int_{\Omega^{N}} \left|\Psi_{v}^{(k)}\right|^{2} = 1 \right\} \end{split}$$

is dense for the $L^1 \cap L^q$ norm

• When d = 3, it's not (uses Lieb 83)

What we want to know

- Uniqueness for $k \ge 1$?
- Inversion with pure states for d = 2?

The local problem Graphs What we learn

Table of contents

Introduction

- The setting and the objective
- Properties of the direct map
- Ill-posedness
- Literature
- 2 The dual problem
 - Optimality properties
 - Regularization

3 Numerical inversion

• The local problem

Graphs

• What we learn

The local problem Graphs What we learn

d = 1

Figure: Plot for d = 1, N = 5, k = 0 on the left, k = 3 on the right, $\log_{10} |\rho_n - \rho|$, $\log_{10} |v_n - v|$

The local problem Graphs What we learn

Uniqueness

Figure: d = 1, N = 3, k = 0 left, k = 1 middle, k = 5 right. Densities in blue, inverse potentials in other colors

The local problem Graphs What we learn

d = 2

Figure: d = 2, N = 5, k = 0; v, $\rho_{\Psi^{(0)}(v)}$, $\log_{10} |v_n - v|$, $\log_{10} |\rho_n - \rho_{\Psi^{(0)}(v)}|$

The local problem Graphs What we learn

d = 3

Figure: d = 3, N = 4, k = 1; ρ , v_n , $\log_{10} |\rho_n - \rho|$

39 / 45

The local problem Graphs What we learn

Simulations at high densities

40 / 45

The local problem Graphs What we learn

Simulations at high densities

Figure: Convergence of $\rho_N^{-1}(N\rho)/N^{\frac{2}{d}}$, $\int \rho = 1$

41 / 45

The local problem Graphs What we learn

Conjecture

For any
$$\rho \geqslant 0$$
 such that $\int \rho = 1$ and $\sqrt{\rho} \in H^1$,

$$\frac{\rho_N^{-1}(N\rho)}{N^{\frac{2}{d}}} \xrightarrow[N \to +\infty]{}$$

The local problem Graphs What we learn

Conjecture

For any
$$\rho \ge 0$$
 such that $\int \rho = 1$ and $\sqrt{\rho} \in H^1$,

$$\frac{\rho_N^{-1}(N\rho)}{N^{\frac{2}{d}}} \xrightarrow[N \to +\infty]{} v_{\mathsf{TF},\rho} = -\rho^{\frac{2}{d}}$$

The direct statement version is in Founais, Lewin, Solovej (2019)

The local problem Graphs What we learn

Table of contents

Introduction

- The setting and the objective
- Properties of the direct map
- Ill-posedness
- Literature
- 2 The dual problem
 - Optimality properties
 - Regularization

3 Numerical inversion

- The local problem
- Graphs
- What we learn

The local problem Graphs What we learn

What we learn from simulations

• Confirms Gaudoin and Burke (2004), no uniqueness for $k \ge 1$

The local problem Graphs What we learn

What we learn from simulations

.

- Confirms Gaudoin and Burke (2004), no uniqueness for $k \ge 1$
- For d = 2, the set of pure states densities

$$\begin{split} \left\{ \begin{split} \rho_{\Psi_{\nu}^{(k)}} & \left| \ v \in (L^{p} + L^{\infty})(\Omega), \\ \Psi_{\nu}^{(k)} \in \operatorname{Ker}\left(H_{N}^{w=0}(v) - E_{N}^{(k)}(v)\right), \int_{\Omega^{N}} \left|\Psi_{\nu}^{(k)}\right|^{2} = 1 \end{split} \right\} \end{split}$$

is dense in the set of positive functions

The local problem Graphs What we learn

What we learn from simulations

- Confirms Gaudoin and Burke (2004), no uniqueness for $k \geqslant 1$
- For d = 2, the set of pure states densities

$$\begin{split} \left\{ \begin{split} \rho_{\Psi_{\nu}^{(k)}} \mid \nu \in (L^{p} + L^{\infty})(\Omega), \\ \Psi_{\nu}^{(k)} \in \operatorname{Ker}\left(H_{N}^{w=0}(\nu) - E_{N}^{(k)}(\nu)\right), \int_{\Omega^{N}} \left|\Psi_{\nu}^{(k)}\right|^{2} = 1 \end{split} \right\} \end{split}$$

is dense in the set of positive functions

• Degeneracies are generic, even for d = 1. Need to be considered, not in literature

The local problem Graphs What we learn

Conclusion

• No uniqueness for $k \ge 1$ (simulations)

The local problem Graphs What we learn

Conclusion

- No uniqueness for $k \ge 1$ (simulations)
- Constructive mixed states inversion: for any ρ, k, d, ε , we can find v such that $\left\| \rho_{\Gamma^{(k)}(v)} \rho \right\|_{L^1 \cap L^q} \leq \varepsilon$

The local problem Graphs What we learn

Conclusion

- No uniqueness for $k \ge 1$ (simulations)
- Constructive mixed states inversion: for any ρ, k, d, ε , we can find v such that $\left\| \rho_{\Gamma^{(k)}(v)} \rho \right\|_{L^1 \cap L^q} \leq \varepsilon$
- Pure states inversion:
 - d = 1 yes (theoretical)
 - d = 2 yes (simulations)
 - d = 3 no (theoretical but not rigorous)

The local problem Graphs What we learn

Conclusion

- No uniqueness for $k \ge 1$ (simulations)
- Constructive mixed states inversion: for any ρ, k, d, ε , we can find v such that $\left\| \rho_{\Gamma^{(k)}(v)} \rho \right\|_{L^1 \cap L^q} \leq \varepsilon$
- Pure states inversion:
 - d = 1 yes (theoretical)
 - d = 2 yes (simulations)
 - d = 3 no (theoretical but not rigorous)
- We gave an algorithm taking into account degeneracies