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N-body quantum mechanics

No spin, static, space Rd , electrons

States are Ψ ∈ L2a

((
Rd
)N
,C
)
, with

∫
RdN |Ψ|2 = 1

Ψ(. . . , xi , . . . , xj , . . . ) = −Ψ(. . . , xj , . . . , xi , . . . )

Hamiltonian : operator of L2a
( (

Rd
)N
,C
)

HN(v) =
N∑
i=1

−∆xi +
∑

16i<j6N

w(xi − xj) +
N∑
i=1

v(xi )

Ground and excited states are given by the kth eigenspaces
Ker

(
HN(v)− E

(k)
N (v)

)
, found by

E
(k)
N (v) = sup

A⊂L2
a((Rd )N)

dimC A=k

inf
Ψ∈A⊥∫
|Ψ|2=1

Ψ∈H1
a ((Rd )N)

〈Ψ,HN(v)Ψ〉

Curse of dimensionality
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Spectrum

E
(0)
N (v)

E
(1)
N (v)

ΣN(v)

σess
(
HN(v)

)
= [ΣN(v),+∞[

Figure: Spectrum σ
(
HN(v)

)
A kth bound state exists if v is in

V(k)
N,∂ :=

{
v ∈ Lp + L∞

∣∣∣ E (k)
N (v) < inf σess(HN(v))

}
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Pure and mixed states

Pure states are{
PΨ = |Ψ〉 〈Ψ| ,Ψ ∈ H1

a (RdN),

∫
RdN

|Ψ|2 = 1
}

Choose a basis (Ψi )i . Mixed states are

Conv
{
PΨ = |Ψ〉 〈Ψ| ,Ψ ∈ H1

a (RdN),

∫
RdN

|Ψ|2 = 1
}

=

{∑
i∈N

λiPΨi

∣∣ +∞∑
i=1

λi = 1, λi > 0

}
=
{

Γ op of H1
a (RdN)

∣∣ Γ = Γ∗ > 0,Tr Γ = 1
}

kth bound mixed states : Ran Γ ⊂ Ker
(
HN(v)− E

(k)
N (v)

)
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The one-body density

One-body density (much less information than Ψ)

ρΨ(x) := N

∫
Rd(N−1)

|Ψ|2 (x , x2, . . . , xN)dx2 · · · dxN

ρ > 0,
∫
ρΨ = N,

√
ρ ∈ H1
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Inverse potential

Given ρ > 0,
∫
ρ = N, k ∈ N, find v such that ρΨ(k)(v) = ρ.

Figure: Density ρ for N = 3
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Inverse potential

Given ρ > 0,
∫
ρ = N, k ∈ N, find v such that ρΨ(k)(v) = ρ.

Figure: Density ρ and its inverse v , for N = 3 and k = 2

Existence/uniqueness ?
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Why finding inverse potentials ?

Finding effective models in DFT

−→

ρ −→ HN
w=0(veff)
↓

Ψ(k),E
(k)
N , ...

Control theory
Mathematical understanding of DFT
Optimal Effective Potential
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DFT map: v 7→ ρΨ(k)(v) = ρ(k)(v)

Given ρ > 0,
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ρ = N, we search vρ such that
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Definition set ?
Injective ?
Image ? Is it dense ? The answer will be different for pure
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Inverting algorithm ?

12 / 45



Introduction
The dual problem

Numerical inversion

The setting and the objective
Properties of the direct map
Ill-posedness
Literature

Questions

DFT map: v 7→ ρΨ(k)(v) = ρ(k)(v)

Given ρ > 0,
∫
ρ = N, we search vρ such that

ρ(k)(vρ) = ρ

Definition set ?

Injective ?
Image ? Is it dense ? The answer will be different for pure
and mixed states
Inverse problem well-posed ?
Inverting algorithm ?

12 / 45



Introduction
The dual problem

Numerical inversion

The setting and the objective
Properties of the direct map
Ill-posedness
Literature

Questions

DFT map: v 7→ ρΨ(k)(v) = ρ(k)(v)

Given ρ > 0,
∫
ρ = N, we search vρ such that

ρ(k)(vρ) = ρ

Definition set ?
Injective ?

Image ? Is it dense ? The answer will be different for pure
and mixed states
Inverse problem well-posed ?
Inverting algorithm ?

12 / 45



Introduction
The dual problem

Numerical inversion

The setting and the objective
Properties of the direct map
Ill-posedness
Literature

Questions

DFT map: v 7→ ρΨ(k)(v) = ρ(k)(v)

Given ρ > 0,
∫
ρ = N, we search vρ such that

ρ(k)(vρ) = ρ

Definition set ?
Injective ?
Image ? Is it dense ? The answer will be different for pure
and mixed states

Inverse problem well-posed ?
Inverting algorithm ?

12 / 45



Introduction
The dual problem

Numerical inversion

The setting and the objective
Properties of the direct map
Ill-posedness
Literature

Questions

DFT map: v 7→ ρΨ(k)(v) = ρ(k)(v)

Given ρ > 0,
∫
ρ = N, we search vρ such that

ρ(k)(vρ) = ρ

Definition set ?
Injective ?
Image ? Is it dense ? The answer will be different for pure
and mixed states
Inverse problem well-posed ?

Inverting algorithm ?

12 / 45



Introduction
The dual problem

Numerical inversion

The setting and the objective
Properties of the direct map
Ill-posedness
Literature

Questions

DFT map: v 7→ ρΨ(k)(v) = ρ(k)(v)

Given ρ > 0,
∫
ρ = N, we search vρ such that

ρ(k)(vρ) = ρ

Definition set ?
Injective ?
Image ? Is it dense ? The answer will be different for pure
and mixed states
Inverse problem well-posed ?
Inverting algorithm ?

12 / 45



Introduction
The dual problem

Numerical inversion

The setting and the objective
Properties of the direct map
Ill-posedness
Literature

Table of contents

1 Introduction
The setting and the objective
Properties of the direct map
Ill-posedness
Literature

2 The dual problem
Optimality properties
Regularization

3 Numerical inversion
The local problem
Graphs
What we learn

13 / 45



Introduction
The dual problem

Numerical inversion

The setting and the objective
Properties of the direct map
Ill-posedness
Literature

The definition set

V(0)
N,∂ =

{
v ∈ Lp + L∞

∣∣∣ E (0)
N (v) < inf σess(HN(v))

}
V(0)
N := V(0)

N,∂ ∩
{
v
∣∣ dim

(
HN(v)− E

(0)
N (v)

)
= 1
}
,

Theorem (Path-connectedness of the space of binding potentials)

∩Ni=1V
(0)
i ,∂ is path-connected

Conjecture : V(0)
i+1,∂ ⊂ V

(0)
i ,∂ . Would yield V(0)

N,∂ = ∩Ni=1V
(0)
i ,∂

Corollary (Path-connectedness of the set v -representable densities)

The set ρ(0)
(
∩Ni=1V

(0)
i ,∂

)
is path-connected

14 / 45
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Injectivity

Theorem (Hohenberg-Kohn, 1964)

Let w , v1, v2 ∈ Lp>max(2,2d/3)(Rd) + L∞(Rd). If there are two
ground states Ψ1 and Ψ2 of HN(v1) and HN(v2), such that

ρΨ1 = ρΨ2 ,

then v1 = v2 + E1−E2
N .
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Compactness of v 7→ ρ(0)(v)

Theorem (Main properties of Ψ(0))

v 7→ Ψ(k)(v) is C∞ from V(k)
N to H1

p

For v ∈ V(k)
N , dvΨ(k) : Ld/2 + L∞ → H1 ∩

{
Ψ(k)(v)

}⊥
(
dvΨ(k)

)
u = −

(
HN(v)− E

(k)
N (v)

)−1
⊥
(
ΣN
i=1u(xi )

)
Ψ(k)(v),

dvΨ(k) is compact

Let Λ ⊂ Rd be a bounded open set. Assume v ∈ V(0)
N ,

vn ⇀ v and vn1Rd\Λ → v1Rd\Λ in Lp>
d
2 + L∞. Then

E
(0)
N (vn)→ E

(0)
N (v), vn ∈ V(0)

N for n large enough, and

Ψ(0)(vn)→ Ψ(0)(v) in H1

16 / 45
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Ill-posedness of the inversion

Theorem (The set of v -representable densities is very small)

Consider that the system lives in a bounded open set Ω ⊂ Rd .

Then Lp>d/2 3 v 7→ ρ(0)(v) ∈W 1,1 is compact , (ρ(0))−1 is

discontinuous, and ρ(0)(V(0)
N ) has empty interior in

W 1,1 ∩
{∫
· = N

}
.

The inverse problem is ill-posed !
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Inverse continuity

Proposition (Weak inverse continuity of Ψ)

Let p > max(2d/3, 2), v , vn ∈ V(k)
N,∂ such that vn − E

(k)
N (vn)/N is

bounded in Lp + L∞ and Ψ(k) (vn)→ Ψ(k)(v) in H2(RdN). Then
vn → v a.e. up to a subsequence.
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Existing literature

Target ρ: we search v such that
ρΨ(k)(v) = ρ for pure states, Ψ(k)(v) ∈ Ker

(
HN(v)− E

(k)
N (v)

)
ρΓ(k)(v) = ρ for mixed states,

Ran Γ(k)(v) ⊂ Ker
(
HN(v)− E

(k)
N (v)

)

{
ρΨ(k)

∣∣ Ψ(k) ∈ Ker
(
HN(v)− E

(k)
N (v)

)
,
∣∣∣∣∣∣Ψ(k)

∣∣∣∣∣∣
L2

= 1
}

⊂
{
ρΓ(k)

∣∣ Ran Γ(k) ⊂ Ker
(
HN(v)− E

(k)
N (v)

)
,Tr Γ(k) = 1

}
Inverse problem solved for

approximate invertibility with mixed states for k = 0
(Lieb 1983)
classical systems at T > 0 (Chayes Chayes Lieb 1984)
quantum systems on lattices for k = 0 for mixed states
(Chayes Chayes Ruskai 1985)
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G (k)
ρ (v) := E

(k)
N (v)−

∫
Rd

vρ, sup
v∈Lp(Rd )

G (0)
ρ (v) = FL(ρ)

G
(k)
ρ (v + c) = G

(k)
ρ (v)

Concave for k = 0
On degenerate potentials, v 7→ ρΨ(k)(v) and E

(k)
N are

not differentiable
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Numerical inversion

Optimality properties
Regularization

Dual optimality

G (k)
ρ (v) := E

(k)
N (v)−

∫
Rd vρ

Theorem (Optimality in the dual problem)

Take ρ > 0, v ∈ V(k)
N,∂ .

i) Are equivalent:
• there is a kth bound mixed state Γ of v such that ρΓ = ρ

• v is a local maximizer of G (k)
ρ

• v is a global maximizer of G (k)
ρ

ii) If v maximizes G (k)
ρ and

• dim Ker
(
HN(v)− E

(k)
N (v)

)
∈ {1, 2},

• or d = 1 and w = 0,
then v has a kth bound pure state Ψ such that ρΨ = ρ.

Does a maximum exist ?
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Regularization

G
(k)
ρ (v) = E

(k)
N (v)−

∫
vρ is not coercive in Lp ! Ex :

v ∈ L1 ∩ Lp>1, v > 0, vn(x) := ndv(nx),
||vn||pLp = nd(p−1)

∫
vp → +∞ but E (k)

N (vn) = 0, and∫
vnρ→ ρ(0)

∫
v is bounded

Dual : restriction to potentials V =
∑

i∈I viαi ,
v ∈ (vi )i∈I ∈ `∞(I ,R), αi ∈ L∞(Ω),

∑
i∈I αi = 1Ω, ri ∈ R+,

ri =
∫
ραi ,

∑
i∈I ri = N

G
(k)
r ,α(v) := E

(k)
N

(∑
i∈I

viαi

)
−
∑
i∈I

vi ri ,
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Coercivity

G
(k)
r ,α(v) 6 −min r

N
||v ||`1 + c ,

Theorem (Existence of the inverse potential)

When I is finite G
(k)
r ,α is coercive and there exists a maximizer v . If

Ω ⊂ Rd is bounded, there is a kth excited N-particle ground mixed
state Γv of HN

(∑
i∈I viαi

)
such that

∫
αiρΓv = ri (=

∫
αiρ) ∀i .

Constructive inversion with mixed states
For a given k , ρ, ε > 0, there exists a potential v and Γv with
Ran Γv ⊂ Ker

(
HN(v)− E

(k)
N (v)

)
such that

||ρΓv − ρ||L1∩Lq 6 ε. The state can be chosen to be pure
when d = 1 and w = 0.
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“Gradient” ascent

Minimize J(v) :=
∫
Rd

(
ρΨ(k)(v) − ρ

)2
?

Second idea, maximize

G (k)
ρ (v) := E

(k)
N (v)−

∫
Rd

vρ
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Local dual problem

+δvG
(k)
ρ (u) = max

Ψ0,...,ΨMk−k∈Ker
(
HN(v)−E (k)

N (v)
)

||Ψi ||=1,Ψi⊥Ψj

06i ,j6Mk−k

min
Ψ=

∑Mk−k

i=0 λiΨi

λi∈C,
∑

i |λi |
2=1

∫
(ρΨ − ρ) u

Proposition (Local dual problem)

Take w > 0, v ∈ V(k)
N,∂ . We have

sup
u∈Lp+L∞

||u||Lp+L∞=1

+δvG
(k)
ρ (u) = max

Q⊂KerR(HN(v)−E (k)
N (v))

dimR Q=Mk−k+1

min
Γ∈S(Q)

Γ>0,Tr Γ=1

||ρΓ − ρ||Lp′ ,

and the supremum is attained by u∗ =
∣∣∣ ρΓ∗−ρ
||ρΓ∗−ρ||Lp′

∣∣∣p′−1 sgn(ρΓ∗ − ρ),

where Γ∗ is an optimizer of the right hand side.
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“Gradient” ascent

Maximize

G (k)
ρ (v) := E

(k)
N (v)−

∫
Rd

vρ

Grid discretization Zd

Consider a target ρ > 0,
∫
ρ = N

Start from Bohm’s potential v0 =
∆
√
ρ√
ρ

Iterate vn+1 = vn + αu∗

+δvG
(k)
ρ (u∗) = max

||u||=1
+δvG

(k)
ρ (u) > 0

Line search for α, temperature
Convergence criterion:

∣∣∣∣ρ(k)(vn)− ρ
∣∣∣∣
L1 /N 6 ε
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∆
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Goal

What we know
Approximate inversion with mixed states for any k

When d = 1, the set of pure state densities{
ρ

Ψ
(k)
v

∣∣ v ∈ (Lp + L∞)(Ω),

Ψ
(k)
v ∈ Ker

(
Hw=0
N (v)− E

(k)
N (v)

)
,

∫
ΩN

∣∣∣Ψ(k)
v

∣∣∣2 = 1
}

is dense for the L1 ∩ Lq norm
When d = 3, it’s not (uses Lieb 83)

What we want to know
Uniqueness for k > 1 ?
Inversion with pure states for d = 2 ?
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d = 1

Figure: Plot for d = 1, N = 5, k = 0 on the left, k = 3 on the right,
log10 |ρn − ρ|, log10 |vn − v |
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Uniqueness

Figure: d = 1, N = 3, k = 0 left, k = 1 middle, k = 5 right. Densities in
blue, inverse potentials in other colors
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d = 2

Figure: d = 2, N = 5, k = 0 ; v , ρΨ(0)(v), log10 |vn − v |,
log10

∣∣ρn − ρΨ(0)(v)

∣∣
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Figure: d = 3, N = 4, k = 1 ; ρ, vn, log10 |ρn − ρ| 39 / 45
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Figure: Convergence of ρ−1
N (Nρ)/N
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For any ρ > 0 such that
∫
ρ = 1 and

√
ρ ∈ H1,

ρ−1N (Nρ)

N
2
d

→
N→+∞

vTF,ρ = −ρ
2
d

The direct statement version is in Founais, Lewin, Solovej (2019)
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What we learn from simulations

Confirms Gaudoin and Burke (2004), no uniqueness for k > 1

For d = 2, the set of pure states densities{
ρ

Ψ
(k)
v

∣∣ v ∈ (Lp + L∞)(Ω),

Ψ
(k)
v ∈ Ker

(
Hw=0
N (v)− E

(k)
N (v)

)
,

∫
ΩN

∣∣∣Ψ(k)
v

∣∣∣2 = 1
}

is dense in the set of positive functions
Degeneracies are generic, even for d = 1. Need to be
considered, not in literature
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Conclusion

No uniqueness for k > 1 (simulations)

Constructive mixed states inversion: for any ρ, k , d , ε, we can
find v such that

∣∣∣∣∣∣ρΓ(k)(v) − ρ
∣∣∣∣∣∣
L1∩Lq

6 ε

Pure states inversion:
d = 1 yes (theoretical)
d = 2 yes (simulations)
d = 3 no (theoretical but not rigorous)

We gave an algorithm taking into account degeneracies
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