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Context

Figure: Adatom on a graphene lattice
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Hamiltonian and Green function

• One-body Schrödinger equation: i∂tψ = Hψ = (−∆ + V )ψ on L2(Rd)

• V ∈ L∞comp

• The Hamiltonian is self-adjoint.

0

R

Figure: Spectrum of the Hamiltonian

• The Green function is defined for z ∈ C \ σ(H) as the inverse of z − H on L2(Rd) or the
Fourier-Laplace transform of the propagator U(t) = −iθ(t)e−iHt .

• A resonance is a pole of the continuation of the Green function from the upper complex
plane to the lower complex plane.
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Example: wavepacket in a potential well

Take a gaussian wavepacket localized in a potential well V at t = 0; H = −∆ + V the
Hamiltonian.

(a) T=0 (b) T=14 (c) T=31

Figure: Wavepacket at different moments.

The state oscillates at frequency ω and has a lifetime 1
Γ = 66. It is associated to a resonance

located at ω − iΓ, Γ =0.015.
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Extension of the Green function

Theorem (Meromorphic continuation of the resolvent, Dyatlov, Zworski 2019)

Let V ∈ L∞comp(Rd), H = −∆ + V . Let ψ,ϕ ∈ L2
comp(Rd) and let f (z) = 〈ψ| 1

z−H |ϕ〉. Let U
an open domain which does not contain 0, simply connected in C, and containing z0 such that
Im(z0) > 0.
Then f extends meromorphically to U.

The poles in the lower complex planes are the resonances.
Our work applies to more sophisticated Hamiltonians:

H = −∆ + Vper + Vdef

H = H0 + Vdef

We will introduce it in a discrete context, with H = H0 + V , H0 periodic, V localized.
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Monoatomic chain in 1D
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Monoatomic chain in 1D

0-2 2

Figure: Spectrum of the Hamiltonian

εk=2 cos(k)

Energy band

k

E

9 / 33



Plan

1. Introduction

2. Computation of the Green function for a periodic Hamiltonian

3. Implementation

4. Perturbation by a localized defect

5. Conclusion

10 / 33



Bloch theorem

Theorem (Bloch Theorem)

Let H0 : l2(Zd ,CS)→ l2(Zd ,CS) periodic and self-adjoint. Suppose H0 is finite-range i.e.
R 7→ H0(0,R) is compactly supported. Denote by B the Brillouin zone [−π, π[d .

Let U :

{
l2(Zd) → L2([−π, π[d ,CS)

Uu(k) = f (k) = 1√
2π

d

∑
R′∈Zd e ik·R

′
u(R′)

the Fourier Transform

For k ∈ B, let Hk =
∑

R′∈Zd H0(0,R′)e ik·R
′
. Then(

UH0U
−1f
)

(k) = Hkf (k)
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Inverse of a periodic Hamiltonian

It allows to write, for z ∈ C, Im(z) > 0:

R0(R,R′; z) =

∫
k∈B

e ik(R−R′)

z − Hk
dk

Take any Hk periodic with eigenvalues εk, and do the integration for z in the strict upper
complex plane.
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Integrand for a z in the upper complex plane (for one band)

Take z = E0 + iη, η > 0.
Zoom on E0 = εk01 ∈ σ(H). At k01, with
∇εk 6= 0, εk is locally invertible.

E0 + iη = εk1 ⇒ k1 = k01 +
iη

∇εk01

+O(η2)

For a z in the upper complex plane, the
k for which z − εk = 0 is shifted in the
direction of the gradient. k01 k02

εk0 = E0

εk

Energy band εk

k

Figure: One periodic energy band εk for some Hk .
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Problematic points

k01 k02

εk0 = E0

εk

Energy band εk

k

(a) One periodic energy band εk for some Hk .

k01 +
iη
∇εk01

k02 +
iη
∇εk02

Re(k)

Im(k)

k01 k02
−π π

(b) Points k for which the integrand z − εk vanishes for a
z = E0 + iη in the upper complex plane.
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Generalization of the contour deformation

Theorem (Closed integral deformation)

Let A(k) be a (2π)d− periodic function, analytic in an open set U = Rd + i [−η, η]d . Then,
for all periodic and smooth functions ki (k) : Rd → [−η, η]d , we have∫

[−π,π]d
A(k)dk =

∫
[−π,π]d

A(k + iki (k)) det(1 + ik′i (k))dk
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Contour deformation

k01 k02

εk0 = E0

εk

Energy band εk

k

(a) One periodic energy band εk for some Hk .

k01 +
iη
∇εk01

k02 +
iη
∇εk02

Re(k)

Im(k)

k01 k02
−π π

(b) Contour deformation for a z = E0 + iη in the upper complex
plane.
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Form of ki

εk+iki = εk + iki∇εk +O(k2
i ) ki (k, z) = −E1

∇εk
(|∇εk|2 + α2)

χ

(
εk − Re(z)

E2

)
χ(x) = e−x

2

Energy band

k

E

(a) Energy band of the Hamiltonian.
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(b) ki (z) for this expression.
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Green function for H0

R0(R,R′; z) =

∫
k∈B

e ik(R−R′)

z − εk
dk = lim

N→∞

2π

N

∑
n∈{1,...N}d

e i
2nπ
N

(R−R′)

z − ε 2nπ
N

(a) Coefficient [0,0] of the Green function in the
complex plane.

(b) Coefficient [0,0] of the Green function
continuation with contour deformation in a
neighbourhood of the spectrum.
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Monoatomic chain in 1D
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Dyson formula

Theorem (Dyson equation)

Let V compactly supported on l2(Zd), H0 self-adjoint on l2(Zd), z ∈ C, Im(z) > 0.
Then R(z) = (z − (H0 + V ))−1 is defined and

R(z) = R0(z)(1− VR0(z))−1 (1)

For our defect V localized on four sites, provided R0(z) is known, (1− VR0(z))−1 is easy to
compute.
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Position of the resonances

Figure: Determinant of the resonance matrix (1 − VR0(z))−1
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Resonant states

We take z at which (1− VR0(z)) is not invertible. We display the eigenvector φ associated to
the eigenvalue 0 in this equation. We also display ψ = R0φ, which is the resonant state for the
whole system.
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(b) ψ
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Unperturbed Green function for the diatomic chain
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Energy bands for the diatomic chain

E

k

Figure: Energy bands for the diatomic chain

Figure: Coefficient [0,0] of the Green function in the
complex plane for this Hamiltonian.
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Resonances for the diatomic chain

Figure: Two poles appearing in the resonance function for the diatomic chain when we add the defect.

30 / 33



Convergence of the method
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slope=-0.11

Figure: Relative error on the position of one of the the poles.
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Conclusion

• Model for periodic Hamiltonians in infinite domains without finite-size box

• Flexibility on the potential

• To be integrated in DFT?

Thank you for your attention!
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