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Figure: Adatom on a graphene lattice
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Hamiltonian and Green function

® One-body Schrodinger equation: i9:) = Hip = (—A + V)1 on L2(RY)
e Vel

comp

The Hamiltonian is self-adjoint.
R

0

Figure: Spectrum of the Hamiltonian

The Green function is defined for z € C\ o(H) as the inverse of z — H on L2(RY) or the
Fourier-Laplace transform of the propagator U(t) = —if(t)e~"Ht.

® A resonance is a pole of the continuation of the Green function from the upper complex
plane to the lower complex plane.
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Example: wavepacket in a potential well

Take a gaussian wavepacket localized in a potential well V att =0; H= —A + V the
Hamiltonian.

(a) T=0 (b) T=14

Figure: Wavepacket at different moments.

The state oscillates at frequency w and has a lifetime % = 66. It is associated to a resonance
located at w — i, I =0.015.

6/33



Extension of the Green function

Theorem (Meromorphic continuation of the resolvent, Dyatlov, Zworski 2019)

Let V € ngmp(]Rd), H=-A+V. Lety,p € Lgomp(Rd) and let f(z) = <w\z_1,_,|<p>. Let U
an open domain which does not contain 0, simply connected in C, and containing zy such that
Im(Zo) > 0.

Then f extends meromorphically to U.

The poles in the lower complex planes are the resonances.
Our work applies to more sophisticated Hamiltonians:

H=-A+ Vper + Vdef
H = Ho + Vier

We will introduce it in a discrete context, with H = Hy + V/, Hp periodic, V localized.
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Monoatomic chain in 1D
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Ho (e™") = 2cos(k) (e™")

n

€k=2cos(k)
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Monoatomic chain in 1D

Energy band
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Figure: Spectrum of the Hamiltonian E oo
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2. Computation of the Green function for a periodic Hamiltonian
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Bloch theorem

Theorem (Bloch Theorem)

Let Hy : I7(Z9,C%) — [2(Z9,C?) periodic and self-adjoint. Suppose Hy is finite-range i.e.
R — Hp(0,R) is compactly supported. Denote by B the Brillouin zone [—m, 7[9.

. {lz(Zd) — L?([-m,x[9,C3)

(7Y the Fourier Transform
Uu(k) =f(k)= ﬁ Sriezd € R u(R)

Fork € B, let Hx = ) ricza Ho(0, R)e* R Then

(UHoU™*f) (k) = Hif (k)
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Inverse of a periodic Hamiltonian

It allows to write, for z € C,Im(z) > 0:

o/k(R—R')

Ro(R,R’;z) = / —dk

kes Z — Hk

Take any Hy periodic with eigenvalues ¢k, and do the integration for z in the strict upper
complex plane.
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Integrand for a z in the upper complex plane (for one band)

Energy band ¢,

2.0

—— Periodic function &(k)
Take z = Eg + in, n > 0. e
Zoom on Eg = ¢y, € o(H). At ko1, with o] =0
Veg # 0, gk is locally invertible. os
s _ f77 2 €k 00
Eo+ in =ek, = ki = ko1 + +O(n?)
kot -0.5
For a z in the upper complex plane, the “10
k for which z — g, = 0 is shifted in the s
direction of the gradient. '
=2.0
-3 -2 -1

Figure: One periodic energy band e, for some Hk.13/33



Problematic points

Energy band ey,

— Periodic function &(k)

2
1.5
ek = Ep
1.0

klll k(JZ

=3 -2 ~1 1 2 3

k

(a) One periodic energy band ¢y for some Hj.

Im(k)
Ik i
01+ V5km
Iiﬂ k kgo |7r Re(k)
o ko2t %Zm

(b) Points k for which the integrand z — e vanishes for a
z = Ep + in in the upper complex plane.
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Generalization of the contour deformation

Theorem (Closed integral deformation)

Let A(k) be a (211)9— periodic function, analytic in an open set U = RY + i[—n,n]9. Then,

for all periodic and smooth functions k;(k) : RY — [—n, ]9, we have

/ A(k)dk = / Ak -+ ik;(k)) det(1 + iK!(k))dk
[l [l
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Contour deformation

Energy band e,

— Periodic function &(k)
; Im(k)
1.5
ey = Eoy
1.0

ko1 ko2

k

(a) One periodic energy band ¢, for some Hy. (b) Contour deformation for a z = Ey + in in the upper complex
plane.
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3. Implementation
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. Ve ek — Re
Ek+ik; = €k + /k,-Vz-:k + O(k,-z) k,-(k,z) = _E1(|V€k’2 :_ a2)x ( k 3 (Z))

x2

x(x) =e”
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Form of k;

R
Exiik, = ek + ik Vey + O(K?) ki(k,z) = —E; Vek X (6" e(Z))

(|Vek|? + a?) E>
X(x) = e
Energy band k iatz=1.5
20 0.08
s 006
1o 0.04
0. 0.02
E oo 2 0.00
=05 =0.02
-1.0 -0.04
-1.5 -0.06
-2.0 -0.08
-3 -2 -1 kO 1 2 3 -3 -2 -1 (‘)( 1 2 3
(a) Energy band of the Hamiltonian. (b) ki(z) for this expression.
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Green function for H,

ik(R—R') 2T (R-R')

e . 27 el N
Ro(R,R';z):/ ——dk = lim m Z _—

zZ— £ N—oo Z — &2
keB k ne{l,..N}d W
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Green function for Hy

o/k(R—R')

Ro(R,R’; z) :/ —dk

keB Z — €k

Imaginary part of the Green function, N=30

03
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-01 -1

-02 -2

“03 -3

3 -2 -1 o 1 2 3

(a) Coefficient [0,0] of the Green function in the
complex plane.
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Green function for Hy

o/k(R—R')

Ro(R,R’; 2) =/ ———dk

keB Z — €k

Imaginary part of the Green function, N=30

03 3
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01 1
0.0 0
-01 -1
-02 -2
“03 -3
3 -2 -1 0 1 2 3

(a) Coefficient [0,0] of the Green function in the
complex plane.

. 2w e"%TW(R_RI)

im 27y <

N—oo N Z — Ea2nm
ne{l,..N}d N

Imaginary part of the Green function, N=30

-3 -2 -1 0 1 2 3

(b) Coefficient [0,0] of the Green function
continuation with contour deformation in a
neighbourhood of the spectrum.
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4. Perturbation by a localized defect
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Monoatomic chain in 1D
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Dyson formula

Theorem (Dyson equation)

Let VV compactly supported on 1?(Z9), Hy self-adjoint on I>(Z%), z € C,Im(z) > 0.
Then R(z) = (z — (Ho + V)) ™! is defined and

R(z) = Ro(2)(1 — VRo(2)) ™ (1)

For our defect V localized on four sites, provided Ry(z) is known, (1 — VRy(z))™ ! is easy to
compute.
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Position of the resonances

0.0
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Log scaled modulus of the resonance function
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Figure: Determinant of the resonance matrix (1 — VRy(z))™*
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Resonant states

We take z at which (1 — VRy(z)) is not invertible. We display the eigenvector ¢ associated to
the eigenvalue 0 in this equation. We also display ¢ = Ry¢, which is the resonant state for the
whole system.

100 Resonant state for the projected equation
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Resonant states

We take z at which (1 — VRy(z)) is not invertible. We display the eigenvector ¢ associated to
the eigenvalue 0 in this equation. We also display ¢ = Ry¢, which is the resonant state for the
whole system.

100 Resonant state for the projected equation 10,0 Resonant state
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Unperturbed Green function for the diatomic chain

1 0 1
Ho = 111

Energy bands for the diatomic chain

Figure: Energy bands for the diatomic chain

Imaginary part of Green function, N=30

-0.2
-2 -1 o 1 2 3

Figure: Coefficient [0,0] of the Green function in the
complex plane for this Hamiltonian.
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Resonances for the diatomic chain

Log scaled modulus of the resonance function ) Phase of the resonance function
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Figure: Two poles appearing in the resonance function for the diatomic chain when we add the defect.
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Convergence of the method

Relative distance to the pole

+ slope=-0.11

Figure: Relative error on the position of one of the the poles.
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5. Conclusion
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Conclusion

® Model for periodic Hamiltonians in infinite domains without finite-size box
® Flexibility on the potential
® To be integrated in DFT?

Thank you for your attention!

33/33



	Introduction
	Computation of the Green function for a periodic Hamiltonian
	Implementation
	Perturbation by a localized defect
	Conclusion

