Computation of quantum resonances in solids and molecules

Eloïse Letournel

CERMICS Team Matherials, Inria

September 22, 2021

GAMM 2021
Tutors: Antoine Levitt (Matherials)
Ivan Duchemin (CEA Grenoble)
Luigi Genovese (CEA Grenoble)

Context

Figure: Adatom on a graphene lattice

Table of contents

1. Introduction
2. Computation of the Green function for a periodic Hamiltonian
3. Implementation
4. Perturbation by a localized defect
5. Conclusion

Plan

1. Introduction

2. Computation of the Green function for a periodic Hamiltonian
3. Implementation
4. Perturbation by a localized defect
5. Conclusion

Hamiltonian and Green function

- One-body Schrödinger equation: $i \partial_{t} \psi=H \psi=(-\Delta+V) \psi$ on $L^{2}\left(\mathbb{R}^{d}\right)$
- $V \in L_{\text {comp }}^{\infty}$
- The Hamiltonian is self-adjoint.

Figure: Spectrum of the Hamiltonian

- The Green function is defined for $z \in \mathbb{C} \backslash \sigma(H)$ as the inverse of $z-H$ on $L^{2}\left(\mathbb{R}^{d}\right)$ or the Fourier-Laplace transform of the propagator $U(t)=-i \theta(t) e^{-i H t}$.
- A resonance is a pole of the continuation of the Green function from the upper complex plane to the lower complex plane.

Example: wavepacket in a potential well

Take a gaussian wavepacket localized in a potential well V at $t=0 ; H=-\Delta+V$ the Hamiltonian.

Figure: Wavepacket at different moments.

The state oscillates at frequency ω and has a lifetime $\frac{1}{\Gamma}=66$. It is associated to a resonance located at $\omega-i \Gamma, \Gamma=0.015$.

Extension of the Green function

Theorem (Meromorphic continuation of the resolvent, Dyatlov, Zworski 2019)

Let $V \in L_{\text {comp }}^{\infty}\left(\mathbb{R}^{d}\right), H=-\Delta+V$. Let $\psi, \varphi \in L_{\text {comp }}^{2}\left(\mathbb{R}^{d}\right)$ and let $f(z)=\langle\psi| \frac{1}{z-H}|\varphi\rangle$. Let U an open domain which does not contain 0 , simply connected in \mathbb{C}, and containing z_{0} such that $\operatorname{Im}\left(z_{0}\right)>0$.
Then f extends meromorphically to U.
The poles in the lower complex planes are the resonances. Our work applies to more sophisticated Hamiltonians:

$$
\begin{aligned}
& H=-\Delta+V_{\text {per }}+V_{\text {def }} \\
& H=H_{0}+V_{\text {def }}
\end{aligned}
$$

We will introduce it in a discrete context, with $H=H_{0}+V, H_{0}$ periodic, V localized.

Monoatomic chain in 1D

Monoatomic chain in 1D

Figure: Spectrum of the Hamiltonian

Plan

1. Introduction

2. Computation of the Green function for a periodic Hamiltonian 3. Implementation
3. Perturbation by a localized defect
4. Conclusion

Bloch theorem

Theorem (Bloch Theorem)

Let $H_{0}: I^{2}\left(\mathbb{Z}^{d}, \mathbb{C}^{S}\right) \rightarrow I^{2}\left(\mathbb{Z}^{d}, \mathbb{C}^{S}\right)$ periodic and self-adjoint. Suppose H_{0} is finite-range i.e. $\mathbf{R} \mapsto H_{0}(0, \mathbf{R})$ is compactly supported. Denote by \mathcal{B} the Brillouin zone $\left[-\pi, \pi\left[^{d}\right.\right.$.

$$
\text { Let } U:\left\{\begin{array}{ll}
I^{2}\left(\mathbb{Z}^{d}\right) & \rightarrow L^{2}\left(\left[-\pi, \pi\left[\left[^{d}, \mathbb{C}^{S}\right)\right.\right.\right. \\
U u(\mathbf{k}) & =f(\mathbf{k})=\frac{1}{\sqrt{2 \pi}^{d}} \sum_{\mathbf{R}^{\prime} \in \mathbb{Z}^{d}} e^{i \mathbf{k} \cdot \mathbf{R}^{\prime}} u\left(\mathbf{R}^{\prime}\right)
\end{array} \quad\right. \text { the Fourier Transform }
$$

For $\mathbf{k} \in \mathcal{B}$, let $H_{\mathbf{k}}=\sum_{\mathbf{R}^{\prime} \in \mathbb{Z}^{d}} H_{0}\left(0, \mathbf{R}^{\prime}\right) e^{i \mathbf{k} \cdot \mathbf{R}^{\prime}}$. Then

$$
\left(U H_{0} U^{-1} f\right)(\mathbf{k})=H_{\mathbf{k}} f(\mathbf{k})
$$

Inverse of a periodic Hamiltonian

It allows to write, for $z \in \mathbb{C}, \operatorname{Im}(z)>0$:

$$
R_{0}\left(\mathbf{R}, \mathbf{R}^{\prime} ; z\right)=\int_{\mathbf{k} \in \mathcal{B}} \frac{e^{i \mathbf{k}\left(\mathbf{R}-\mathbf{R}^{\prime}\right)}}{z-H_{\mathbf{k}}} d \mathbf{k}
$$

Take any $H_{\mathbf{k}}$ periodic with eigenvalues $\varepsilon_{\mathbf{k}}$, and do the integration for z in the strict upper complex plane.

Integrand for a z in the upper complex plane (for one band)

Take $z=E_{0}+i \eta, \eta>0$.
Zoom on $E_{0}=\varepsilon_{k_{01}} \in \sigma(H)$. At k_{01}, with $\nabla \varepsilon_{k} \neq 0, \varepsilon_{k}$ is locally invertible.
$E_{0}+i \eta=\varepsilon_{k_{1}} \Rightarrow k_{1}=k_{01}+\frac{i \eta}{\nabla \varepsilon_{k_{01}}}+\mathcal{O}\left(\eta^{2}\right)$
For a z in the upper complex plane, the k for which $z-\varepsilon_{k}=0$ is shifted in the direction of the gradient.

Figure: One periodic energy band ε_{k} for some $H_{k{ }_{13 / 33}}$

Problematic points

(a) One periodic energy band ε_{k} for some H_{k}.

(b) Points k for which the integrand $z-\varepsilon_{k}$ vanishes for a $z=E_{0}+i \eta$ in the upper complex plane.

Generalization of the contour deformation

Theorem (Closed integral deformation)

Let $A(\mathbf{k})$ be a $(2 \pi)^{d}$ - periodic function, analytic in an open set $U=\mathbb{R}^{d}+i[-\eta, \eta]^{d}$. Then, for all periodic and smooth functions $\mathbf{k}_{i}(\mathbf{k}): \mathbb{R}^{d} \rightarrow[-\eta, \eta]^{d}$, we have

$$
\int_{[-\pi, \pi]^{d}} A(\mathbf{k}) d \mathbf{k}=\int_{[-\pi, \pi]^{d}} A\left(\mathbf{k}+i \mathbf{k}_{i}(\mathbf{k})\right) \operatorname{det}\left(1+i \mathbf{k}_{i}^{\prime}(\mathbf{k})\right) d \mathbf{k}
$$

Contour deformation

Energy band ε_{k}

(a) One periodic energy band ε_{k} for some H_{k}.
(b) Contour deformation for a $z=E_{0}+i \eta$ in the upper complex plane.

Plan

1. Introduction

2. Computation of the Green function for a periodic Hamiltonian
3. Implementation
4. Perturbation by a localized defect
5. Conclusion

Form of \mathbf{k}_{i}

$$
\begin{aligned}
\varepsilon_{\mathbf{k}+i \mathbf{k}_{i}}=\varepsilon_{\mathbf{k}}+i \mathbf{k}_{i} \nabla \varepsilon_{\mathbf{k}}+\mathcal{O}\left(k_{i}^{2}\right) \quad \mathbf{k}_{i}(\mathbf{k}, z) & =-E_{1} \frac{\nabla \varepsilon_{\mathbf{k}}}{\left(\left|\nabla \varepsilon_{\mathbf{k}}\right|^{2}+\alpha^{2}\right)} \chi\left(\frac{\varepsilon_{\mathbf{k}}-\operatorname{Re}(\mathrm{z})}{E_{2}}\right) \\
\chi(x) & =e^{-x^{2}}
\end{aligned}
$$

Form of \mathbf{k}_{i}

$$
\begin{aligned}
\varepsilon_{\mathbf{k}+i \mathbf{k}_{i}}=\varepsilon_{\mathbf{k}}+i \mathbf{k}_{i} \nabla \varepsilon_{\mathbf{k}}+\mathcal{O}\left(k_{i}^{2}\right) \quad \quad \mathbf{k}_{i}(\mathbf{k}, z) & =-E_{1} \frac{\nabla \varepsilon_{\mathbf{k}}}{\left(\left|\nabla \varepsilon_{\mathbf{k}}\right|^{2}+\alpha^{2}\right)} \chi\left(\frac{\varepsilon_{\mathbf{k}}-\operatorname{Re}(\mathrm{z})}{E_{2}}\right) \\
\chi(x) & =e^{-x^{2}}
\end{aligned}
$$

(a) Energy band of the Hamiltonian.

(b) $\mathbf{k}_{i}(z)$ for this expression.

Green function for H_{0}

$$
R_{0}\left(\mathbf{R}, \mathbf{R}^{\prime} ; z\right)=\int_{\mathbf{k} \in \mathcal{B}} \frac{e^{i \mathbf{k}\left(\mathbf{R}-\mathbf{R}^{\prime}\right)}}{z-\varepsilon_{\mathbf{k}}} d \mathbf{k}=\lim _{N \rightarrow \infty} \frac{2 \pi}{N} \sum_{\mathbf{n} \in\{1, \ldots N\}^{d}} \frac{e^{i \frac{2 \mathfrak{n} \pi}{N}\left(\mathbf{R}-\mathbf{R}^{\prime}\right)}}{z-\varepsilon_{\frac{2 n}{N}}^{N}}
$$

Green function for H_{0}

$$
R_{0}\left(\mathbf{R}, \mathbf{R}^{\prime} ; z\right)=\int_{\mathbf{k} \in \mathcal{B}} \frac{e^{i \mathbf{k}\left(\mathbf{R}-\mathbf{R}^{\prime}\right)}}{z-\varepsilon_{\mathbf{k}}} d \mathbf{k}=\lim _{N \rightarrow \infty} \frac{2 \pi}{N} \sum_{\mathbf{n} \in\{1, \ldots N\}^{d}} \frac{e^{i \frac{2 n \pi}{N}\left(\mathbf{R}-\mathbf{R}^{\prime}\right)}}{z-\varepsilon_{\frac{2 n}{N}}^{N}}
$$

(a) Coefficient $[0,0]$ of the Green function in the complex plane.

Green function for H_{0}

$$
R_{0}\left(\mathbf{R}, \mathbf{R}^{\prime} ; z\right)=\int_{\mathbf{k} \in \mathcal{B}} \frac{e^{i \mathbf{k}\left(\mathbf{R}-\mathbf{R}^{\prime}\right)}}{z-\varepsilon_{\mathbf{k}}} d \mathbf{k}=\lim _{N \rightarrow \infty} \frac{2 \pi}{N} \sum_{\mathbf{n} \in\{1, \ldots N\}^{d}} \frac{e^{i \frac{2 n \pi}{N}\left(\mathbf{R}-\mathbf{R}^{\prime}\right)}}{z-\varepsilon_{\frac{2 n}{N}}^{N}}
$$

(a) Coefficient $[0,0]$ of the Green function in the complex plane.

Imaginary part of the Green function, $\mathrm{N}=30$

(b) Coefficient $[0,0]$ of the Green function continuation with contour deformation in a neighbourhood of the spectrum.

Plan

1. Introduction

2. Computation of the Green function for a periodic Hamiltonian
3. Implementation
4. Perturbation by a localized defect
5. Conclusion

Monoatomic chain in 1D

Dyson formula

Theorem (Dyson equation)

Let V compactly supported on $I^{2}\left(\mathbb{Z}^{d}\right), H_{0}$ self-adjoint on $I^{2}\left(\mathbb{Z}^{d}\right), z \in \mathbb{C}, \operatorname{Im}(z)>0$.
Then $R(z)=\left(z-\left(H_{0}+V\right)\right)^{-1}$ is defined and

$$
\begin{equation*}
R(z)=R_{0}(z)\left(1-V R_{0}(z)\right)^{-1} \tag{1}
\end{equation*}
$$

For our defect V localized on four sites, provided $R_{0}(z)$ is known, $\left(1-V R_{0}(z)\right)^{-1}$ is easy to compute.

Position of the resonances

Figure: Determinant of the resonance matrix $\left(1-V R_{0}(z)\right)^{-1}$

Resonant states

We take z at which $\left(1-V R_{0}(z)\right)$ is not invertible. We display the eigenvector ϕ associated to the eigenvalue 0 in this equation. We also display $\psi=R_{0} \phi$, which is the resonant state for the whole system.

(a) ϕ

Resonant states

We take z at which $\left(1-V R_{0}(z)\right)$ is not invertible. We display the eigenvector ϕ associated to the eigenvalue 0 in this equation. We also display $\psi=R_{0} \phi$, which is the resonant state for the whole system.

(a) ϕ

(b) ψ

Unperturbed Green function for the diatomic chain

Imaginary part of Green function, $\mathrm{N}=30$

Figure: Coefficient $[0,0]$ of the Green function in the complex plane for this Hamiltonian.

Resonances for the diatomic chain

Figure: Two poles appearing in the resonance function for the diatomic chain when we add the defect.

Convergence of the method

Figure: Relative error on the position of one of the the poles.

Plan

1. Introduction

2. Computation of the Green function for a periodic Hamiltonian
3. Implementation
4. Perturbation by a localized defect
5. Conclusion

Conclusion

- Model for periodic Hamiltonians in infinite domains without finite-size box
- Flexibility on the potential
- To be integrated in DFT?

Thank you for your attention!

