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Self-consistent field method for Hartree—Fock

For a molecular system of N occupied molecular orbitals and an LCAO basis set of size

N, we want to solve
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C, = argmin&,(C), where &,(C):=Tr (c hoC+
CeM(p)

where
M, :={CeR¥*N|CTS,C =1Idy}.

We want thus to find ép € M(p) and a diagonal matrix E, € R"*" such that

where F,(D):=h, + G,(D) . (3)

\Non-linear term



Fixed-point algorithm

Choose some C, such that €] S,C, = Id y and construct a sequence (C,), ., that

verifies o B
F( n)Cn = SanEn
c”:Ispc":;,L =1Idy . @)
677, = CICW
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Problem statement

— Self-consistent field iterations are the bottlenecks when using Hartree—Fock or
density functional theory.

— When doing molecular dynamics or geometry optimization for a given molecular
system, we may discard lots of previous pieces of information.

— How can we make the most of repeated self-consistent field computations on the
same molecular system?



Geometric interpretation



Grassmannian manifold

Density matrices can be seen as points on a Grassmannian manifold

11 A
S2D,S7 € Mg, = {D e R |D =D',D? = D, Tr(D) = N}. (5)



Grassmannian manifold

Density matrices can be seen as points on a Grassmannian manifold
11 )
S¢D,SF € Mg, :={D¢c RM*¥|D=D",D? =D, Tr(D) = N}. (5)

= We can do interpolation in the tangent space of some density matrix and map the
result back to the Grassmannian.



Grassmannian manifold
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Figure 1: Schematic illustration of the geometrical setting. We illustrate by the blue hypersurface the Grassmann

manifold M , and by the transparent plane the tangent space TpyMar to Mgy atDy. We illustrate the

one-to-one relationship between a close density matrix D € M ¢, and the corresponding vector I = Log Mg oDin
MGy

the tangent space.
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Exponential and logarithmic maps

Locally, there exists a diffeomorphism that transform the manifold M, into an affine
space, the tangent space, and back.

The maps are the exponential

EXPMG,.,O: fTDU — Mg,

, 6
' CcCT (©)
where C' = [CyVcos(X) + Usin(X)]VT, with I' = UXVT the singular value
decomposition of T".
And the logarithm function
L Me, =T
O8N0 Gr Do 7)

D LOgMG, 7()(D)

can be defined in a similar way.



Model problem (recapitulation)




Supporting article

MOLECULAR PHYSICS e1779834
https://dol.org/10.1080/00268976.2020.1779834

aylor & Francis

ayior & Frandis Group

SPECIAL ISSUE OF MOLECULAR PHYSICS IN HONOUR OF JURGEN GAUSS LYEES

An approximation strategy to compute accurate initial density matrices for
repeated self-consistent field calculations at different geometries

E. Polack?, A. Mikhalev®, G. Dusson?, B. Stamm @ and F. Lipparini ©¢
3L aboratoire de Mathématiques de Besancon, UMR CNRS 6623, Université Bourgogne Franche-Comté, Besangon, France; ®Center for

Computational Engineering Science, WTH Aachen University, Aachen, Germany; <Dipartimento di Chimica e Chimica Industriale, Univerista di
Pisa, Pisa, Italy



Constrained example

Aim
Provide accurate density matrices guesses for the self-consistent field algorithm with

localised basis functions and where the nuclear coordinates are changed along a few
user-specified collective variables.



Constrained example
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Figure 2: Schematic representation of the parameter space along two normal modes for the formaldehyde. The
positions of the atoms are projected on two axes.
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Constrained example

Method objectives:
+ No limits on computational cost for data generation of some values of the normal
modes.
+ Negligible on-the-fly cost for new values.
+ Should work for large energy fluctuations.

+ Should be able to provide a guess accurate enough to bypass self-consistent field
iterations.



Constrained example

Alanine  Asparagine Phenylalanine  Tryptophan

#atoms 13 17 23 27
Core 21 21 23 26
Harris 13 14 14 15
Hickel 16 17 17 18
MinAO 18 17 17 17
SAD 16 17 17 17

Table 1: Number of SCF iterations required to achieve convergence (max change in the density smaller than 10—
using different initial guesses. As the computations were carried out using different packages, that offer different
SCF implementations, this cannot be considered an accurate comparison between the various guesses, but only a
qualitative estimate of the number of required iterations. Note that all the calculations have been performed using
standard DIIS extrapolation.



We used an extrapolated density matrix as a guess to the SCF procedure:
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We used an extrapolated density matrix as a guess to the SCF procedure:

+ blackbox for the chemists;

+ does not change the final results.



Results (1D) — Lagrangian interpolation
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Figure 3: Results for the 1D parameter space. Number of SCF iterations required to achieve convergence (left
panel) and Frobenius norm error on the density guess (right panel) as a function of the interpolation order for the
various test systems. All the calculations were performed with CFOUR using the following convergence criteria for
the increment of the density AP RMS AP < 10~7 and max |AP| < 1076,



Results (2D)

With the cc-pVDZ basis set, the energy fluctuates of 9.1, 8.9, 8.5 and 7.6 kcal /mol for
alanine, asparagine, phenylalanine, and tryptophan, respectively.
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Figure 4: Results for the 2D parameter space. Number of SCF iterations required to achieve convergence (left
panel) and Frobenius norm error on the density guess (right panel) as a function of the interpolation order for the
various test systems. All the calculations were performed with CFOUR using the following convergence criteria for
the increment of the density AP RMS AP < 107 and max |[AP| < 1076,



We can almost instantly predict the density matrices of all other configurations using
only a small number of data.



We can almost instantly predict the density matrices of all other configurations using
only a small number of data.

However, we need access to underlying variables.



Molecular dynamics




* Bypassing underlying variables;
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+ Bypassing underlying variables;
+ Useful for large molecular systems;
+ Negligible overhead;

+ Keep the method as simple as possible.



We split the mapping from positions to points on the density matrices manifold with

RM M =T p, — Mg (N, N)
R=dg = I'gr =D = ExpMCmO(FR).

®)



We split the mapping from positions to points on the density matrices manifold with

RM M =T p, — Mg (N, N)

(8)
R=dg = I'gr =D = ExpMCmO(FR).
We settle on the Coulomb matrix
0.5z24 ifi=j
dn):: = b R 9
(de)i; ——*J____ otherwise ©)

where ¢, is the time step 1.



Method - Least-squares

We look for coefficients cy ; that can approximate the density matrices on the tangent

space
N,

R Topp(R) =D cpi T €T p,, (10)

i=1

WithT'; =T )-



Method - Least-squares

We look for coefficients cy ; that can approximate the density matrices on the tangent

space
N,

R Topp(R) =D cpi T €T p,, (10)
i=1
with T, = Tret,)-
We use a least-squares method, to solve
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Method - Least-squares

We look for coefficients cy ; that can approximate the density matrices on the tangent

space
N,

R Topp(R) =D cpi T €T p,, (10)

i=1
withT'; = Tg(; .
We use a least-squares method, to solve

2

min
cr€RNt

N,
dr — Z CR,z‘dRu,,j) )
i=1

We use the same coefficients for the density matrices on the tangent space and use
the density matrix

N,
D,pp(R) = EXpM(;r,U (Z CRi Fz) (12)
i=1

as an initial guess to the SCF algorithm.



Method - Schematic representation
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Figure 5: Schematic illustration of the G-Ext method



Outline of the algorithm

Data: Array desc containing the descriptors for k previous time-steps, p,, the
descriptor for the current position, C,,_; and S,,_, respectively the molecular
orbitals and overlap matrices of the previous time-step, and cref the reference
point on the Grassmannian

Result: Guess density matrix for time-step n > 1

begin

cmat(;, ;, n — 1) < Orthonormalization(C,_,, S, 1 );
gmat(;, ; n — 1) «+ Log(cref, cmat(, ;, n —1));

desc, p,, + Stabilization(desc, p,);

¢+ LeastSquares(desc, p,,);

n—1 R .
Capp < 200, c() -gmat(, ;, 0);

Copp < Exp(cref, T, );
return2-C, - CT
end

Algorithm 1: Density extrapolation framework G-Ext

20



Results — Test cases

System  Ngy Ny N

ocP 129 4915 1038
APPA 31 16449 309
DMABN 21 6843 185
3HF 28 15018 290

Table 2: Overview of the system size in terms of number of quantum mechanics-atoms (Ng,,),
number of molecular mechanics-atoms (V,,,,) and the total number of (quantum mechanics)
basis functions (V).
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Results — Performances

Table 3: Performances of the G-Ext method for different number of extrapolation points, compared
with the xLBo algorithm with and without McWeeny purification. All the results were obtained using
a 10~° convergence threshold for the root-mean-square increment of the density matrix and are
derived from a 1 ps long molecular dynamics simulation, using a 0.5 fs time step. We report the
average number of iterations required to converge the ScF, together with the associated standard
deviation. Note that the first 8 steps were discarded.

oCcP DMABN APPA 3HF

Method Average o Average o Average o Average o

XLBO 3.82 0.66 3.98 0.16 3.00 0.03 4.00 0.14
XLBO/MW 2.95 0.31 3.76 0.56 3.00 0.34 3.96 0.31
G-Ext(3) 2.57 0.84 3.54 0.78 2.95 0.50 3.09 0.41
G-Ext(4) 2.48 0.88 3.14 0.62 2.51 0.50 3.25 0.68
G-Ext(5) 2.25 0.96 3.23 0.75 2.51 0.50 3.30 0.72

G-Ext(6) 2.20 0.96 2.99 0.02 2.51 0.50 3.14 0.56
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Results — Energy conservation
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Figure 6: Total energy (kcal/mol) as a function of simulation time (fs) for 3HF comparing G-Ext(3),
G-Ext(6) and XLBO with McWeeny purification, using a convergence threshold for the scr algorithm of
105 (left panel) and 107 (right panel). The total energy was shifted of +505 000 kcal /mol for
readability.
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[Submitted on 28 Jul 2021]
Grassmann extrapolation of density matrices for Born-Oppenheimer
molecular dynamics

Etienne Polack (LMB), Geneviéve Dusson (LMB), Benjamin Stamm (CCSE), Filippo Lipparini

Born-Oppenheimer Molecular Dynamics (BOMD) is a powerful but expensive technique. The main bottleneck in a
density functional theory bomd calculation is the solution to the Kohn-Sham (KS) equations, that requires an iterative
procedure that starts from a guess for the density matrix. Converged densities from previous points in the trajectory
can be used to extrapolate a new guess, however, the non-linear constraint that an idempotent density needs to
satisfy make the direct use of standard linear extrapolation technigues not possible. In this contribution, we introduce
a locally bijective map between the manifold where the density is defined and its tangent space, so that linear
extrapolation can be performed in a vector space while, at the same time, retaining the correct physical properties of
the extrapolated density using molecular descriptors. We apply the method to real-life, multiscale polarizable
QM/MM.
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Perspectives




+ Time reversibility;
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+ Time reversibility;

+ Geometry optimization;
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+ Time reversibility;
+ Geometry optimization;

* Bypass the need for the SCF algorithm (long term).
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