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Tensor product approximations

Tensor product approximations in quantum chemistry are sensible to
singularities at coalescence points of particles.
Rigorous results for electronic wavefunctions

e Partial wave analysis (Goddard, Hill, Kutzelnigg, Morgan)
@ Hyperbolic cross approximation (Yserentant)

@ Best N-term approximation with hyperbolic wavelets (HJF,
Hachbusch, Schneider)

Similar results for more general and promising formats are still missing.
However, it seems reasonable to assume that these formats are also
plagued by some extend with this problem.

@ Canonical and Tucker format
@ Tensor trains (matrix product states)

@ Hierarchical format
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Renormalization

Originally invented as a subtraction scheme to get rid of ultraviolet
divergencies in perturbative quantum field theory (Dyson, Salam,
Weinberg, Bogoliubov, Parasiuk, Hepp).

The renormalization theory is in this framework a constructive form of the
Hahn-Banach theorem. K. Hepp
@ Highly successful despite a certain lack of elegance (Dirac).

@ Modern approach based on renormalization group theory
(Stiickelberg, Wilson).

@ Applications in condensed matter physics, e.g. Kondo problem,
Landau’s Fermi liquid theory.

In the following, we focus on the subtraction scheme and what can be
learned for the improvement of tensor product approximations.
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Tensor product approximations in a broader sense

Feynman diagrams have some similarities with tensor product
approximations

They can be considered as graphs which have to satisfy certain rules
concerning their connectivity (Feynman rules).
@ Mostly used in the framework of perturbation theory.

@ Countless applications in high energy, statistical and condensed
matter physics.

@ Various network topologies possible, e.g., rings, ladders, parquet, etc.

@ Hopf algebras provide a convenient algebraic framework (Connes,
Kreimer).
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Tensor product approximations in a broader sense

Let us consider e.g. a Feynman diagram F(pi, ..., pm) depending on
P1,---,Pm external momenta. The diagram can be represented as a high
dimensional integral with an integrand of the form

m+n

H fi(pi), with i= m+ 1, m+ n internal momenta

=1
where external and internal momenta satisfy certain linear relations
(momentum conservation) with integration over remaining independent
internal momenta. Propagators are of the form

filp) = @ p € R* (Wick rotation)
P+ p

corresponding to singular kernel functions in configuration space, e.g.,

—(1 + 0% + 023 + B4 — )T, x5) = 6*(xi — x9)

In quantum field theory, such calculations are hampered by ultraviolet and
infrared divergencies.
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Basic idea of renormalization

Simple example: let us consider the divergent integral (¢ > 0)

o0
F(p1) = / L — In(p1 + p2)lg°
€ p1+ p2

physicist’s approach: consider the derivatives

F(p1) = —/6 ﬁ dpo (divergent integral)

©  2p p1 2 < 1
F’ :/ ——dp = B =—+0
P)= ) il itmy mtml. om0

and go back by integration
F(p1) = In(p1) + a, (divergent constant a)
F(p1) = p1In(p1) — p1 + ap1 + b, (divergent constants a, b)

Divergent terms, like ap; + b are combined into effective coupling

constants, masses, etc., e.g., m= mg + a+ --- (mass observed in
experiment).
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Basic idea of renormalization

Sketch of a renormalization scheme

@ Taylor expansion of the integrand with respect to external momenta

p2 p1 2p; 3
—1-2 42 3 ae(o1
p1+ p2 P2 b+ )3t 0.1}

@ Subtracting Ta(p1) =1 — % from integrand, i.e.,

e o] 2
P2 p1 P1
/e <P1+P2 < P2>> P2 ¢ P2p1+ p2) P2

yields a convergent integral.

o Combining divergent parts, like To(p1) =1 — 2, to effective coupling

p2
constants, masses, etc.
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Weinberg's theorem

In quantum field theory Weinberg's theorem answers important questions
concerning convergence and asymptotic behaviour of Feynman diagrams

S. Weinberg, Phys. Rev. 118 (1960), 838-849

@ Overall convergence of the Integral.
e Simple power counting of propagators and vertices works only if all
internal momenta go simultaneously to infinity.
o Integration over subspaces must be taken into account as well.
@ Asymptotic behaviour of Feynman diagrams with respect to external
momenta.
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Renormalization from a quantum chemistry point of view

o No ultraviolet divergencies, instead conical singularities (cusps) at
coalescence points of particles.
o Singularities express themselves by reduced (mixed) Sobolev and Besov
regularity.
e Put limits on convergence rates of tensor product approximations,
e.g. MCSCF wavefunctions.
e Reduced quantities, like density matrices, response or Green's functions
are singular along their diagonals.

e Nonrelativistic propagators, e.g. (noninteracting) Green's functions
(Feynman), amplitudes (Goldstone) and Coulomb interactions.
e In contrast to propagators in quantum field theory, these are
inhomogeneous and anisotropic quantities.
o Conjecture: Pseudo-differential calculus provides an appropriate
framework.
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Renormalization e quantum chemistry point of view

@ Instead of Taylor polynomials in phase space, one can subtract
asymptotic singular contributions in configuration space.

e Singular analysis, i.e., asymptotic parametrices and Green operators,
provides an appropriate framework.

(HJF, G. Flad-Harutyunyan, B.-W. Schulze)
o Adaptation of Weinberg's theorem required (overlapping singularities).
@ How to deal with singular subtraction terms?

e Cannot be simply combined into effective parameters of the model.

o In any case, singularities are represented by low dimensional
submanifolds, therefore a local treatment, e.g., in the framework of a
local defect correction, seems possible.

o Alternatively, it might be possible to treat singular contributions by a
different and simpler model, using some universality features of the
singular behaviour.

11/ 22
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Many-particle models

Many-particle systems can be described by various quantities

Wavefunctions W(xi,...,x,): HF, MCSCF, Cl, etc.

Amplitudes for subsystems 7j;(x1,x2) i,j=1,...,n: CC, CEPA, etc.
Green's functions Gi(xi, t1, X2, t2): GW, Bethe-Salpeter, etc.
Densities p1(x), p2(x1,x2): DFT, etc.

Density matrices 71(x1,X2): Density matrix functionals, etc.
Response functions x(x1, t1, X2, t2): RPA, TDDFT, etc.

These quantities encode subtle asymptotic information in the limit
|x1 — x2| — 0 because of singular Coulomb interactions between particles.

Remark: asymptotic behaviour often smeared up by conventional
discretization schemes.
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lllustrative example

Two-electron harmonium atom with Hamiltonian operator

H= —é<A1 + Az) + W2 |xq 2 4 W?|xo | 4+ 2

x1—xa|
Reduced one-particle density matrix of the ground state Wo(x1,x2)
Y1(x1, X2) Z/\Uo(xl,x3)wo(x2,x3) dxs,
Leading order term of the singular asymptotic expansion, i.e., modulo

C(R3 x R3) for |x; — xp| — 0 is of the form

I
Mx1,x2) ~ [xi = %2> Y Y goum(x1) Yim(b12, é12) + O(Ix1 — x2|°)
1=0,2,4 m=—1

@ Much weaker than Kato's cusp condition for Wo(x1,X2) ~ ¢|x1 — Xa|.
@ Determines decay rate of occupation numbers for natural orbitals.
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RPA Coupled Cluster Model

CC model within the random phase approximation

Q (Ho — €j) Tij(x1, %) = Q\/( xl,x2
_Q\/(Z)(xlaxz)Tu(Xlaxz QZT/(/ X1, X5 )( Vfiﬂv (1)

+P(12/U)QZTi,k(l1aX2 V( (X2
k

—P2/ia Y’ / a1 x5) V2 (x5, %,) diy
k

P02/R Y [ [ riatoa ) Vi ks x0) 7 0. ) s
K,
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RPA Coupled Cluster Model

@ Shifted non-interacting mean field Hamiltonian: Ho — ¢j;
@ Pair-amplitudes

i RPes)e (Res) = R, (x1,%) = 7j(x,X),

indices i, J, k, | refer to the occupied orbitals 1,2,... N.
e Permutation operator: P(12/ij) := 1+ (21)(ji) — (12)(ji) — (21)(#)

@ Projection operator Q := (1 —q1)(1 — q2) with q := Zfil |di) (il
enforces Pauli’s principle between pair-amplitudes

Q7ij(x1, %) = Tif(X1,X2)-

and mean field part

W (x1,%5) = ilxy)d1(%) — 0i(x1)i(x,)
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Goldstone diagrams and W-DOs

In the following Trpa denotes an arbitrary Goldstone diagram.
TrPA(X1, X2) = Trpa(X,Z) With X := X1, Z 1= X1 — X2

Goldstone diagrams and classical W-DOs

Symbol of a Goldstone diagram 7grpa given by
orpa(x,n) == /e_iz"TRpA(x, z) dz.

The symbol belongs to the standard Hérmander class SP(R3 x R3) if it
belongs to C°(R3 x R3) and satisfies the estimate

83650RPA(X,77)‘ S(1+ \n|)p_w| for all x,n € R3.
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Goldstone diagrams and classical W-DOs

Furthermore, it belongs to the class S7(R? x R®), p € Z, of classical
symbols if a decomposition

N—1

orPA(X, 1) = D 0pj(x.1) + Tpn(x, M) (5.1)
=0

into symbols o,_; € SPY(R3 x R3) and remainder o,y € SP~N(R3 x R3)
for any N € N exits, such that for A > 1 and 7 greater some constant, we
have op_j(x, \np) = APJo,_j(x,n). The asymptotic expansion of a
classical Goldstone symbol in Fourier space is related to a corresponding
asymptotic expansion of its kernel function.
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Theorem (Asymptotic behaviour of Goldstone diagrams)

Goldstone diagrams of RPA-CC pair-amplitudes can be considered as
kernel functions of classical pseudo-differential operators without
logarithmic terms in their asymptotic expansions. Given a Goldstone
diagram Trpa, Whose corresponding symbol belongs to the symbol class
Sf:’l, p < —4. Its asymptotic expansion, expressed in spherical coordinates

(z,0,9), is given by

TRPA(X,2) ~ Y 75 (X, 2,0,¢) modulo C°(R? x R?),

0=>j
. Jj—p—3 |
TP*.I'(xa z,0, ¢) = 7=p3 Z Z gj,/m Y/m 0, Qb)
(j—pi:lgven) m==1

where functions gjm belong to C°(R3).
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Theorem (Classification of Goldstone diagrams)

The symbol class of a diagram Trpa can be determined in the following
manner

i) Remove all ladder insertions in the diagram.
i) Count the number of remaining interaction lines n.

Then the corresponding symbol of the diagram Trpa belongs to the
symbol class 554”.
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Corollary
The symbols of Goldstone diagrams representing the progression P, of the
n'th iteration step of standard RPA models can be classified according to
the descending filtration of symbol classes

5—4(n+1) 5 5;4(n+2) S5 5;4(n+3) 5.5 554(2“1_1).

cl

Corollary (Besov regularity)

Let Trpa represent a RPA diagram with corresponding symbol in 5’; ;

p < —4. Then Trpa belongs to Bg(Q x Q) for g > —%p and o =

Qlw
Nlw

cf. HJF, W. Hackbusch and R. Schneider, ESAIM: M2AN 41 (2007) 261-279.
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Local defect correction at edge and corner singularities

Elliptic PDE Au = f with edge (corner) singularity on the right hand side.
Joint. work with W. Hackbusch (MPI Leipzig)

@ Global basis A: Solve Apup = a
@ Local parametrix in a neighbourhood of the singularity
Au=f — u=Pf-Gu
Asymptotic behaviour of solution
u~ b+ 0(rfy) with o = Pf— Gup

@ Local basis \: Solve A\Aliy = fy — (Ali), with appropriate boundary
conditions.

o Local defect @1 + Al corrects matrix elements of global basis 74/\,?/\

@ Solve global problem again: /Z\/\Zl/\ = 7‘/\.
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Conclusions and Outlook

@ Renormalization seems to be a possible route towards a universal
subtraction scheme for singularities in electronic structure
calculations.

e Requires an analog to Weinberg's theorem.

e Determination of singular subtractions using a generally applicable
approach.

e Derivation of a universal subtraction scheme in the spirit of Hepp's
proof of renormalizability of QED.

o Efficient treatment of singular subtractions.

@ An extension of this scheme to hierarchical tensor product
approximations seems possible.
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